Ромб - это параллелограмм с равными сторонами, значит каждая его сторона равна по 80см/4=20см Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам. В итоге, в каждой из плоскостей ABD и BCD находится по два равных прямоугольных треугольника. Если Н - точка пересечения диагоналей, то:
Рассмотрим прямоугольный треугольник АВН. По теореме Пифагора:
Рассмотрим треугольник АНС. Заданный угол между плоскостями равен углу между перпендикулярами, проведенными к линии пересечения плоскостей в этих плоскостях. В данном случае этими перпендикулярами являются отрезки диагонали АН и СН, а угол АНС равен 30 градусов. По теореме косинусов:
Т.к. хорда параллельна касательной, то хорда и радиус, пересекающиеся в точке Н, перпендикулярны. Проведём из точки О в А и В радиусы. Т.к. радиусы, понятно дело, равны, то треугольник АОВ равнобедренный. Т.к хорда перпендикулярна радиусу, треугольник равнобедренный, то ВН = НА. Хорда 12, радиус 10, то по теореме Пифагора ОВ^2 = ОН^2 + НВ^2; 100 = ОН^2 + 36; ОН^2 = 100 - 36; ОН = √64; ОН=8. Т.к расстояние от центра окружности до касательной равно радиусу, расстояние от центра до хорды 8, то расстояние от хорды до касательной равно 10+8= 18
Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам. В итоге, в каждой из плоскостей ABD и BCD находится по два равных прямоугольных треугольника.
Если Н - точка пересечения диагоналей, то:
Рассмотрим прямоугольный треугольник АВН. По теореме Пифагора:
Рассмотрим треугольник АНС. Заданный угол между плоскостями равен углу между перпендикулярами, проведенными к линии пересечения плоскостей в этих плоскостях. В данном случае этими перпендикулярами являются отрезки диагонали АН и СН, а угол АНС равен 30 градусов. По теореме косинусов:
ответ: