Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой. Фокус параболы обозначается буквой F, расстояние от фокуса до директрисы - буквой р. Число р называется параметром параболы.
Пусть дана некоторая парабола. Введем декартову прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус данной параболы перпендикулярно к директрисе и была направлена от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой (рис.). В этой системе координат данная парабола будет определяться уравнением
Объяснение:
1. Найдите градусную меру угла С треугольника АВС, если А = 120, В = 40.
Решение.
180°-(120°+40°)=180°-160°=20°.
***
2. В треугольнике АВС угол С прямой, А = 30, АВ = 16 см. Найдите ВС.
ВС - катет. АВ -- гипотенуза. Угол А=30°.
Катет, лежащий против угла в 30° равен 1/2 гипотенузы. ВС= 1/2 * 16 = 8 см.
***
3. В треугольнике ABC AC = BC. Внешний угол при вершине B равен 125°. Найдите угол C.
Внешний и внутренний углы - смежные их сумма равна 180°.
Угол В= 180° - 125°= 55°;
АВ - основание равнобедренного треугольника. Значит угол А равен углу В и равен 55°.
Угол при вершине (угол С) равен 180°-2*55°=180°-110°=70°.
Пусть дана некоторая парабола. Введем декартову прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус данной параболы перпендикулярно к директрисе и была направлена от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой (рис.). В этой системе координат данная парабола будет определяться уравнением