на СД отметим середину Е. МЕ//ВС//АД=10см соеденим МС и найдем ее длину МС гипатенуза прямоугольного треугольника ВСМ МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х) х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так (0; 10)&(125;+○○) что бы имел с СД две общие точки радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)
Высота равнобедренного треугольника, опущенная на основание является и медианой и делит исходный треугольник на два равных прямоугольных треугольника (один катет общий, два других - половинки основания исходного тр - ка, также равны и гипотенузы как боковые стороны равнобедренного тр-ка) Это справедливо и для второго равнобедренного тр-ка. Имеем 4 равных прямоугольных треугольника (все гипотенузы равны и по теореме Пифагора), они попарно образуют равнобедренные тр-ки, которые тоже равны (равны основания и боковые стороны).
МЕ//ВС//АД=10см
соеденим МС и найдем ее длину
МС гипатенуза прямоугольного треугольника ВСМ
МС= √(10^2+5^2)= √125
радиус окружности с центром М что бы она касалась прямой СД будет равна МЕ. МЕ=10см
что бы не имела с прямой СД общих точек то радиус круга меньше МЕ и больше МС. от этого получаем пусть радиус круга будет (х)
х> 0, х <МЕ то есть х <10 и х>МС то есть х> √125 ответ изобразим так
(0; 10)&(125;+○○)
что бы имел с СД две общие точки
радиус круга так же (х) будет х> МЕ и х <МС то есть 10 <х < √125 (10; √125)
медианой и делит исходный треугольник на два равных прямоугольных треугольника (один катет общий, два других - половинки основания исходного
тр - ка, также равны и гипотенузы как боковые стороны равнобедренного тр-ка)
Это справедливо и для второго равнобедренного тр-ка. Имеем 4 равных прямоугольных треугольника (все гипотенузы равны и по теореме Пифагора),
они попарно образуют равнобедренные тр-ки, которые тоже равны (равны основания и боковые стороны).