Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей. Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам. Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD. Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63. Далее по теореме Пифагора находим второй катет - АО. И находим расстояние. Это будет ОК-АО.
Как мы видим: AO == CO; BO == DO, что и означает, что при пересечении диагоналей — они делятся пополам.
А один из признаков параллелограмма — это то, что диагонали при точке пересечения — делятся пополам, что и означает, что ABCD — параллелограмм.
8)
<OAD == <BDO ⇒ OD == BO (так как из каждого треугольника — одна сторона равна другому (AO == OC)).
OD == BD; AO == OC ⇒ ABCD параллелограмм (один из признаков (см. в 1-ом задании)).
9)
<BOC == <AOD (т.к. вертикальные углы).
<ADO == <OBC.
Как мы видим, каждые 2 угла из треугольников ΔBOC; ΔAOD — равны другой паре углов другого треугольника.
По какому-то там признаку равенства треугольников — если 2 треугольника имеют 2 общих парных угла, и 1 равную сторону из каждого треугольника, то эти треугольники равны.
Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам.
Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD.
Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63.
Далее по теореме Пифагора находим второй катет - АО.
И находим расстояние. Это будет ОК-АО.
7)
Как мы видим: AO == CO; BO == DO, что и означает, что при пересечении диагоналей — они делятся пополам.
А один из признаков параллелограмма — это то, что диагонали при точке пересечения — делятся пополам, что и означает, что ABCD — параллелограмм.
8)
<OAD == <BDO ⇒ OD == BO (так как из каждого треугольника — одна сторона равна другому (AO == OC)).
OD == BD; AO == OC ⇒ ABCD параллелограмм (один из признаков (см. в 1-ом задании)).
9)
<BOC == <AOD (т.к. вертикальные углы).
<ADO == <OBC.
Как мы видим, каждые 2 угла из треугольников ΔBOC; ΔAOD — равны другой паре углов другого треугольника.
По какому-то там признаку равенства треугольников — если 2 треугольника имеют 2 общих парных угла, и 1 равную сторону из каждого треугольника, то эти треугольники равны.
Тоесть: <BCO == <OAD; AO == OC; <BOC == <AOD => ΔBOC == ΔAOD.
ΔBOC == ΔAOD ⇒ BO == OD.
Мы доказали, что при пересечении диагоналей — они делятся пополам, что и означает, что четырёхугольник — параллелограмм.