Известно, что δnbc∼δrtg и коэффициент подобия k=17. периметр треугольника nbc равен 7 см, а площадь равна 4 см2. 1. чему равен периметр треугольника rtg? 2. чему равна площадь треугольника rtg? 1. p(rtg)= см; 2. s(rtg)= см2
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Конус, К - вершина, КО- высота=радиус= R, сечение равнобедренный треугольник АКС, проводим радиусы ОА и ОС= R, треугольникАОС прямоугольный (уголАОС=90 - центральный=дугеАС), равнобедренный, АС=корень(ОА в квадрате+ОС в квадрате)=корень( R в квадрате+ R в квадрате)= R*корень2, проводим высоту ОН в треугольнике АОС =медиане=биссектрисе=1/2АС= R*корень2/2, треугольникОКН прямоугольный, КН=корень(ОК в квадрате+ОН в квадрате)=( R в квадрате+2* R в квадрате/4)= R*корень(3/2). площадь АКС=1/2*АС*КН=1/2* R*корень2* R*корень(3/2)= R*корень3/2
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.