При пересечении двух прямых получается четыре угла . Два из них развернутые и они равны по 180 градусов. Всего сумма 4 углов 360 градусов. Один угол равен 360-305=55 Углы накрест лежащие и они равны. Следовательно два остальных накрест лежащих угла (360-55*2)/2=125 Дано прямые АВ и СК точка О точка пересечения прямых угол АОК =180 (развернутый) АОК =АОС+АОК угол СОК = 180 СОК =СОВ+ВОК АОС+АОК+СОВ=305 ВОК=360-305=55 ВОК=АОС=55 (накрест лежащие) АОК=СОВ=(360-55*2)/2=125 (накрест лежащие)
Решила Fiofionina Решение : Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
Углы накрест лежащие и они равны.
Следовательно два остальных накрест лежащих угла (360-55*2)/2=125
Дано прямые АВ и СК
точка О точка пересечения прямых
угол АОК =180 (развернутый) АОК =АОС+АОК
угол СОК = 180 СОК =СОВ+ВОК
АОС+АОК+СОВ=305
ВОК=360-305=55 ВОК=АОС=55 (накрест лежащие)
АОК=СОВ=(360-55*2)/2=125 (накрест лежащие)
Решение :
Данное задание можно представить в виде прямоугольного треугольника АВС.
Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ.
Получим два подобных треугольника АВС и ДЕС.
Запишем пропорциональности их сторон:
АВ/ДЕ=АС/ДС
Нам известны АВ равно 6 (м)
ДЕ-обозначим за х (это рост человека)
АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба;
ДС-нам тоже известна, она равна 1,2 (м)
Поставим данные в пропорцию и получим:
6/х=4/1,2
х=6*/1,2/4=1,8(м) -это рост человека.
ответ: 180см