Известно, что точка пересечения серединных перпендикуляров сторон и треугольника находится на стороне .
1. Докажи, что =:
точка как точка пересечения серединных перпендикуляров сторон и <...> от конечных точек этих сторон.
Если = <...> и <...> = <...>, следовательно, <...> = <...>.
2. Определи вид треугольника :
равнобедренный
равносторонний
прямоугольный
нельзя определить
разносторонний
3. Определи вид треугольника :
равнобедренный
равносторонний
прямоугольный
нельзя определить
разносторонний
4. Примени соответственное свойство углов и докажи, что∡=∡+∡:
∡ = ∡ ;
∡ = ∡ .
5. Определи вид треугольника :
равносторонний
равнобедренный
разносторонний
нельзя определить
прямоугольный
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.
Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.
Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри треугольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).
Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения
Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).
Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.
Теорема 8 (формулы для вычисления площади треугольника).
4
Последняя формула называется формулой Герона.
Теорема 9 (теорема о биссектрисе внутреннего угла).
Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.
Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)
.
Теорема 11 (формула для вычисления длины биссектрисы).
Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).
Теорема 13 (формула для вычисления длины медианы).
Доказательства некоторых теорем
Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:
Объяснение:
Пусть дан ΔАВС, В - вершина треугольника, АС - основание ΔАВС,
АВ =ВС, ∠А и ∠С - углы при основании.
1) Внешний угол при вершине равнобедренного ΔАВС (обозначим его как β) и внутренний ∠В - смежные углы, и их сумма равна 180° .
Значит, внешний угол β = 180° - ∠В.
2) сумма углов треугольника = 180 °. Следовательно ,
∠А + ∠ В + ∠С = 180°, откуда ∠ В = 180° - ∠А - ∠С, но т.к. ΔАВС - равнобедренный, и значит, ∠А = ∠С, получаем:
∠ В = 180° - 2∠А
Подставим это выражение в формулу для внешнего угла β, получим:
β = 180° - 180° +2∠А
β= 2∠А, ч. т. д.