P - точка касания BC с окружностью. Ясно, что NP II AC; из подобия РАВНОБЕДРЕННЫХ треугольников NPK и AKC NP/AC = KN/CK =1/5; из подобия равнобедренных треугольников NPB и ABC BP/BC = NP/AC = 1/5; то есть BP = BN = 1; AN = AM = MC = CP = 4; AC = 8; AB = BC = 5; BM делит ABC на два "египетских" треугольника (3,4,5), то есть BM = 3; R = 5*5*8/(4*8*3/2) = 25/6;
Опять таки теорема Ван-Обеля CP/PB + CM/AM = CK/KN; тут же дает CP/PB = 4; то есть CP = 4; PB = 1; в этой задачке получить это "обычным" тоже не сложно, но это опять "обходной" путь.
Все, что надо сделать - сосчитать ПЛОЩАДЬ треугольника. Возьмите формулу Герона и сосчитайте. Но чтобы ответ соответствовал "правилам" сайта, я предлагаю такой Я беру прямоугольный треугольник со сторонами 18, 24, 30 (это "египетский" треугольник, то есть подобный известному треугольнику со сторонами 3,4,5) От вершины прямого угла вдоль катета длины 18 я откладываю отрезок длины 10 и соединяю со вторым концом другого катета. Получился еще одни прямоугольный треугольник с катетами 10 и 24. Легко найти, что гипотенуза этого треугольника равна 26 (это Пифагорова тройка 10, 24, 26) Если теперь посмотреть, что осталось от первоначального треугольника, если от него отрезать второй, то как раз получился треугольник со сторонами 26,18 - 10 = 8, 30. То есть - заданный в задаче. Итак, в заданном треугольнике высота к стороне 8 равна 24. :) Отсюда площадь равна S = 8*24/2 = 96; ПОЛУпериметр p = (8 + 26 + 30)/2 = 32; Радиус вписанной окружности r = S/p = 3;
Ясно, что NP II AC;
из подобия РАВНОБЕДРЕННЫХ треугольников NPK и AKC NP/AC = KN/CK =1/5;
из подобия равнобедренных треугольников NPB и ABC BP/BC = NP/AC = 1/5;
то есть BP = BN = 1; AN = AM = MC = CP = 4;
AC = 8; AB = BC = 5;
BM делит ABC на два "египетских" треугольника (3,4,5), то есть BM = 3;
R = 5*5*8/(4*8*3/2) = 25/6;
Опять таки теорема Ван-Обеля CP/PB + CM/AM = CK/KN; тут же дает CP/PB = 4; то есть CP = 4; PB = 1; в этой задачке получить это "обычным" тоже не сложно, но это опять "обходной" путь.
Я беру прямоугольный треугольник со сторонами 18, 24, 30 (это "египетский" треугольник, то есть подобный известному треугольнику со сторонами 3,4,5)
От вершины прямого угла вдоль катета длины 18 я откладываю отрезок длины 10 и соединяю со вторым концом другого катета. Получился еще одни прямоугольный треугольник с катетами 10 и 24. Легко найти, что гипотенуза этого треугольника равна 26 (это Пифагорова тройка 10, 24, 26)
Если теперь посмотреть, что осталось от первоначального треугольника, если от него отрезать второй, то как раз получился треугольник со сторонами 26,18 - 10 = 8, 30. То есть - заданный в задаче.
Итак, в заданном треугольнике высота к стороне 8 равна 24. :)
Отсюда площадь равна S = 8*24/2 = 96;
ПОЛУпериметр p = (8 + 26 + 30)/2 = 32;
Радиус вписанной окружности r = S/p = 3;