1)т.к. окружность вписана в четырёхугольник, то суммы противоположных сторон равны, т.е. ав+cd=bc+ad=6+24=30 (см)
т.к. ав=cd, то ав=cd =30: 2=15 (см).
2) из δ авв1-прям.: ав=15, ав1=(ad-bc)/2=(24-6): 2=9(cм), тогда
вв1= √(ав²-ав1²)=√15²-9²=√144=12(см).
3) sтрап.= ½· (ad+bc)·bb1=½·30·12=180 (см²)
4) радиус ,вписанной в трапецию ,окружности равен половине её высоты ,
т.е. r=½·bb1=6(см).
ответ: 6 см; 180 см².
Дано:
∠А = 90°
ВС = 7 см
AD = 10 см
СD = 5 см
Найти:
АВ - меньшая боковая сторона
Поскольку трапеция прямоугольная и ∠А = 90°, то и ∠В = 90° и меньшая сторона трапеции АВ является высотой трапеции
Из вершины С опустим высоту СК на большую сторону AD трапеции.
СК = АВ
Высота СК делит большее основание AD трапеции на два отрезка
АК = ВС = 7 cм и KD = AD - AK = 10 см - 7 см = 3 см
ΔСКD - прямоугольный с гипотенузой CD = 5 cм
По теореме Пифагора
CD² = CK² + KD²
5² = CK² + 3²
CK² = 25 - 9 = 16
CK = 4 (см)
Поскольку АВ = СК, то АВ = 4 см
Меньшая сторона трапеции АВ = 4 см
1)т.к. окружность вписана в четырёхугольник, то суммы противоположных сторон равны, т.е. ав+cd=bc+ad=6+24=30 (см)
т.к. ав=cd, то ав=cd =30: 2=15 (см).
2) из δ авв1-прям.: ав=15, ав1=(ad-bc)/2=(24-6): 2=9(cм), тогда
вв1= √(ав²-ав1²)=√15²-9²=√144=12(см).
3) sтрап.= ½· (ad+bc)·bb1=½·30·12=180 (см²)
4) радиус ,вписанной в трапецию ,окружности равен половине её высоты ,
т.е. r=½·bb1=6(см).
ответ: 6 см; 180 см².
Дано:
∠А = 90°
ВС = 7 см
AD = 10 см
СD = 5 см
Найти:
АВ - меньшая боковая сторона
Поскольку трапеция прямоугольная и ∠А = 90°, то и ∠В = 90° и меньшая сторона трапеции АВ является высотой трапеции
Из вершины С опустим высоту СК на большую сторону AD трапеции.
СК = АВ
Высота СК делит большее основание AD трапеции на два отрезка
АК = ВС = 7 cм и KD = AD - AK = 10 см - 7 см = 3 см
ΔСКD - прямоугольный с гипотенузой CD = 5 cм
По теореме Пифагора
CD² = CK² + KD²
5² = CK² + 3²
CK² = 25 - 9 = 16
CK = 4 (см)
Поскольку АВ = СК, то АВ = 4 см
Меньшая сторона трапеции АВ = 4 см