Сдесь можно рассмотреть только треугольник ABO угол АОБ равен 90 градусам так как треугольник прямоугольный сумма внутренних углов треугольника равна 180 градусам нам нужно найти половину угла Б 180-(70+90)=20 - это половина угла Б значит целый угол Б будет равен 40 градусам А так как противоположные углы у ромба равны угол Б равен 40 градусов значит угол Д тоже равен 40 градусов угол А равен 140 градусам значит угол С равен тоже 140 градусам можно проверить: так как в четырехугольниках сумма внутренних углов равна 360 градусов, а ромб является четырехугольником 140+140+40+40=360 Вот и все)
Если все грани наклонены под одинаковыми углами, то высота пирамиды падает в центр вписанной окружности, то есть в точку О пересечения биссектрис треугольника. Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой. AC = 5; BC = 12; AB = 13 Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30 Найдем радиус вписанной окружности. r = OK = OM = ON = 2S/P = 2*30/30 = 2 см Высота H = OD = 4√2 см Апофемы, перпендикулярные к ребрам основания DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см Площади боковых граней S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см. S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см. S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см. S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.
угол АОБ равен 90 градусам так как треугольник прямоугольный
сумма внутренних углов треугольника равна 180 градусам
нам нужно найти половину угла Б
180-(70+90)=20 - это половина угла Б
значит целый угол Б будет равен 40 градусам
А так как противоположные углы у ромба равны
угол Б равен 40 градусов значит угол Д тоже равен 40 градусов
угол А равен 140 градусам значит угол С равен тоже 140 градусам
можно проверить:
так как в четырехугольниках сумма внутренних углов равна 360 градусов, а ромб является четырехугольником
140+140+40+40=360
Вот и все)
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.