Пусть M- cередина АС, N - середина АВ. Продолжим ВМ на расстояние ВМ, получим Q, продолжим CN на расстояние CN, получим Р. Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма). Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма). Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой
Вариант 1 иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник. вариант 7 тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство х+7x>49x x+7x-49x>0 -57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя. кажется, все верно посчитано) Ура!)
Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма).
Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма).
Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой
иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник.
вариант 7
тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство
х+7x>49x
x+7x-49x>0
-57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя.
кажется, все верно посчитано)
Ура!)