Известно, что вектор a→ можно выразить через вектор n→ следующим образом: a→=k⋅n→ , при этом n→≠0→ .
Как называются эти векторы при разных значениях k ?
k = 0,6. (Несколько вариантов ответа.)
1.Противоположно направленные
2.Сонаправленные
3.Противоположные
4.Коллинеарные
Даны вершины А(-7;2) B(5;-3) C(8:1) треугольника АBC.
Составить уравнение высоты, проведенной из вершины С.
Высота СД - это перпендикуляр к прямой АВ.
Составим уравнение прямой АВ.
Вектор АВ = (5-(-7); -3-2) = (12; -5).
Уравнение АВ:
(x + 7)/12 = (y – 2)/(-5) в каноническом виде или
5х + 12у + 11 = 0 в общем виде.
Перпендикулярная прямая в общем виде Ах + Ву + С = 0 имеет коэффициенты по сравнению с АВ, равные В и -А (это из условия, что их скалярное произведение равно нулю): 12х - 5у + С = 0.
Для определения слагаемого С подставим координаты точки С:
12*8 - 5*1 + С = 0, отсюда С = -96 + 5 = -91.
Получаем уравнение общего вида:
СD = 12х - 5у - 91 = 0.
(26;4)
Объяснение:
Так как наши графики являются прямыми, функции выглядят так:
Найдем значения k и b, подставив значения точек A и B в уравнение и решив следующую систему:
Найдем b, подставив в :
Первое уравнение имеет такой вид:
- - - - - -
Найдем второе уравнение по аналогии (мне лень расписывать системами, так что я буду писать просто через новую строчку и в конце запишу итоговое решение системы)
- - - - -
- - - - -
Второе уравнение имеет следующий вид:
Чтобы найти точку пересечения, нужно приравнять уравнения графиков.
Чтобы найти y, нужно подставить в любое уравнение значение x.
ответ: (26;4)