Известно, что ВС и АD параллельны. а) Найдите ∠ВСD, если ∠АDC =54°. ответ дайте в градусах. б) Найдите ∠ЕСD, если ∠АDС= 56°. ответ дайте в градусах в) Найдите ∠АDM, если ∠ВСD=120°. ответ дайте в градусах
Прямокутник АВСД, діагоналі АС та ВД перетинаються в т. О. ОН - відстань від т. О до більшої сторони прямокутника ВС (отже ОН - висота трикутника ВСО) ОМ - відстань від т. О до більшої сторони прямокутника АД (отже ОМ - висота трикутника АДО) ОР - відстань від т. О до меншої сторони прямокутника АВ (отже ОР - висота трикутника АВО) ОК - відстань від т. О до меншої сторони прямокутника СД (отже ОК - висота трикутника СДО) Оскільки Діагоналі прямокутника мають однакову довжину, а також в точці перетину діляться навпіл, значить трикутник ВСО=трикутнику АДО та трикутник АВО=трикутнику СДО. А це означає, що і висоти у попарно рівних трикутниках між собою рівні, а саме ОК=ОР, а ОН=ОМ. Виходить, що ОН=ОМ=4 см та ОК=ОР=9 см (по умові задачі сказано, що точка перетину його діагоналей віддалена від його сторін на 4 см і на 9 см).
У прямокутника протилежні сторони рівні. АВ=СД=ОН+ОМ=4+4=8 см ВС=АД=ОР+ОК=9+9=18 см Периметр = сумі довжин усіх сторін прямокутника Периметр = АВ+ВС+СД+АД Отже Периметр = 8+18+8+18=52 см
1. Запишем формулу площади трапеции:
2. Запишем формулу площади ромба:
S=ah; a=S/h=44/4=11
3. Запишем формулу периметра:
P=2(a+b)
16=2(a+b)
a+b=8
a=8-b
Запишем формулу площади и подставим вместо а, выражение 8-b.
S=ab=(8-b)*b=8b-b^2
12=8b-b^2
b^2-8b+12=0
D=64-4*12=16
b1=(8+4)/2=6
b2=(8-4)/2=2
Если ширина 6, то длина 8-6=2, если ширина 2, то длина 8-2=6
4. Наибольшей высотой будет та, которая опущена к меньшей стороне, т.е. к 17.
Найдем площадь по формуле Герона:
p=(17+65+80)/2=162/2=81
5. Найдём площадь по формуле Герон, но сначала найдем полупериметр:
P=(a+b+c)/2=(17+65+80)/2=81
[tex]S=\sqrt{81*(81-17)(81-65)(81-80)}=\sqrt{81*64*16*1}=288
Запишем формулу площади через высоту.
S=ah; h=S/a
найдём наибольшую высоту:
h1=288/17=16,9=17
h2=288/65=4,4
h3=288/80=3,6
Наибольшая высота равна 17.
6.Обозначим одну часть за х, тогда диагонали равны 2х и 3х. Запишем формулу площади через диагонали:
S=1/2 *d1*d2*sina ; sina=1 , т.к. диагонали ромба пересекаются под прямым углом.
2S=d1*d2
2*48=2x*3x
96=6x^2
x^2=16
x=4 (так как длина не может быть отрицательноц, то корень только один)
ОН - відстань від т. О до більшої сторони прямокутника ВС (отже ОН - висота трикутника ВСО)
ОМ - відстань від т. О до більшої сторони прямокутника АД (отже ОМ - висота трикутника АДО)
ОР - відстань від т. О до меншої сторони прямокутника АВ (отже ОР - висота трикутника АВО)
ОК - відстань від т. О до меншої сторони прямокутника СД (отже ОК - висота трикутника СДО)
Оскільки Діагоналі прямокутника мають однакову довжину, а також в точці перетину діляться навпіл, значить трикутник ВСО=трикутнику АДО та трикутник АВО=трикутнику СДО.
А це означає, що і висоти у попарно рівних трикутниках між собою рівні, а саме
ОК=ОР, а ОН=ОМ.
Виходить, що ОН=ОМ=4 см та ОК=ОР=9 см (по умові задачі сказано, що точка перетину його діагоналей віддалена від його сторін на 4 см і на 9 см).
У прямокутника протилежні сторони рівні.
АВ=СД=ОН+ОМ=4+4=8 см
ВС=АД=ОР+ОК=9+9=18 см
Периметр = сумі довжин усіх сторін прямокутника
Периметр = АВ+ВС+СД+АД
Отже
Периметр = 8+18+8+18=52 см
Відповідь: периметр прямокутника=52 см