1. Нехай ∠1 = х (°), тоді ∠2 = x+20 (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+20+x = 180
2x = 160
x = 80
Отже, градусна міра ∠1 = х = 80°, тоді ∠2 = х+20 = 80+20 = 100°.
Відповідь: 80°; 100°.
2. Нехай ∠1 = х (°), тоді ∠2 = 4x (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+4x = 180
5x = 180
x = 36
Отже, градусна міра ∠1 = х = 36°, тоді ∠2 = 4x = 4·36= 144°.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
1. Нехай ∠1 = х (°), тоді ∠2 = x+20 (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+20+x = 180
2x = 160
x = 80
Отже, градусна міра ∠1 = х = 80°, тоді ∠2 = х+20 = 80+20 = 100°.
Відповідь: 80°; 100°.
2. Нехай ∠1 = х (°), тоді ∠2 = 4x (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+4x = 180
5x = 180
x = 36
Отже, градусна міра ∠1 = х = 36°, тоді ∠2 = 4x = 4·36= 144°.
Відповідь: 36°; 144°.
1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.