Известно что выпуклый четырехугольник угольник abcd таков что угол bac=углу bda и угол bad=углу adc=60градусам.найдите длину ab, если известно, что ad=20,cd=6.
Нужно найти отрезок PO. Для этого нужно найти треугольник, из которого можно посчитать PO по теореме Пифагора( то есть прямоугольный треугольник, в котором участвует PO). Раз такого треугольника не видим явно из условия, придется его построить, при этом нужно задействовать известные данные. Нам известна диагональ квадрата, значит, можно посчитать его сторону, также известна длина отрезка PH.
Поэтому построим треугольник POH, проведем OH. Треугольник POH будет прямоугольным, потому что PO - отрезок, соединяющий вершину правильной пирамиды с центром ее основания, а такой отрезок перпендикулярен основанию пирамиды. Тогда в ΔPOH угол ∠POH - прямой.
Осталось найти OH. Так как PO перпендикулярно плоскости основания, а PH перпендикулярно BC, то по следствию из теоремы о трех перпендикулярах OH будет перпендикулярно BC.
H - середина BC(PH - высота равнобедренного треугольника, значит, PH также и медиана, а Δ-к равнобедренный, потому что пирамида правильная ), поэтому CH в 2 раза меньше BC. Прямоугольные треугольники OHC и ABC подобны по двум углам, поэтому OH также в 2 раза меньше AB.
AB - сторона квадрата ABCD, а сторона квадрата в меньше его диагонали. Тогда AB = 12/
так как высоты падают на стороны параллелограмма под углами 90 градусов, то находим угол в образовавшемся четырехугольнике (2 высоты и части сторон): 360 - 90-90-30=150 градусов - один из углов параллелограмма, а таких углов в параллелограмме два- противолежащих. Найдем два других: 360-150-150=60 градусов два других угла, а один угол будет равен 30 градусов. Напротив этих 30 градусов лежат высоты 3 и 5, которые являются катетами в прямоугольном треугольнике, а гипотенуза будет равна двум катетам (по свойству: против угла в 30 градусов лежит катет равный половине гипотенузы). Значит одна из сторон равна 6, а другая по аналогии равна 10, следовательно периметр параллелограмма равен 2*(10+6)=32
Объяснение:
5. Нарисуем пирамиду, назовем центр основания O.
Нужно найти отрезок PO. Для этого нужно найти треугольник, из которого можно посчитать PO по теореме Пифагора( то есть прямоугольный треугольник, в котором участвует PO). Раз такого треугольника не видим явно из условия, придется его построить, при этом нужно задействовать известные данные. Нам известна диагональ квадрата, значит, можно посчитать его сторону, также известна длина отрезка PH.
Поэтому построим треугольник POH, проведем OH. Треугольник POH будет прямоугольным, потому что PO - отрезок, соединяющий вершину правильной пирамиды с центром ее основания, а такой отрезок перпендикулярен основанию пирамиды. Тогда в ΔPOH угол ∠POH - прямой.
Осталось найти OH. Так как PO перпендикулярно плоскости основания, а PH перпендикулярно BC, то по следствию из теоремы о трех перпендикулярах OH будет перпендикулярно BC.
H - середина BC(PH - высота равнобедренного треугольника, значит, PH также и медиана, а Δ-к равнобедренный, потому что пирамида правильная ), поэтому CH в 2 раза меньше BC. Прямоугольные треугольники OHC и ABC подобны по двум углам, поэтому OH также в 2 раза меньше AB.
AB - сторона квадрата ABCD, а сторона квадрата в меньше его диагонали. Тогда AB = 12/
Теперь находим OP по теореме Пифагора
OP = = = 3 см
так как высоты падают на стороны параллелограмма под углами 90 градусов, то находим угол в образовавшемся четырехугольнике (2 высоты и части сторон): 360 - 90-90-30=150 градусов - один из углов параллелограмма, а таких углов в параллелограмме два- противолежащих. Найдем два других: 360-150-150=60 градусов два других угла, а один угол будет равен 30 градусов. Напротив этих 30 градусов лежат высоты 3 и 5, которые являются катетами в прямоугольном треугольнике, а гипотенуза будет равна двум катетам (по свойству: против угла в 30 градусов лежит катет равный половине гипотенузы). Значит одна из сторон равна 6, а другая по аналогии равна 10, следовательно периметр параллелограмма равен 2*(10+6)=32
Объяснение: