552 кв. ед.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
B₁D² = AB² + AD² + BB₁²
BB₁² = B₁D² - (AB² + AD²) = 17² - (9² + 12²) = 289 - (81 + 144) = 289 - 225 = 64
BB₁ = √64 = 8
Площадь полной поверхности:
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности:
Sбок. = Росн. · ВВ₁
Sбок. = 2(AB + AD) · BB₁ = 2(9 + 12) · 8 = 336 кв. ед.
Sосн. = AB · AD = 9 · 12 = 108 кв. ед.
Sполн. = 336 + 2 · 108 = 336 + 216 = 552 кв. ед.
552 кв. ед.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
B₁D² = AB² + AD² + BB₁²
BB₁² = B₁D² - (AB² + AD²) = 17² - (9² + 12²) = 289 - (81 + 144) = 289 - 225 = 64
BB₁ = √64 = 8
Площадь полной поверхности:
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности:
Sбок. = Росн. · ВВ₁
Sбок. = 2(AB + AD) · BB₁ = 2(9 + 12) · 8 = 336 кв. ед.
Sосн. = AB · AD = 9 · 12 = 108 кв. ед.
Sполн. = 336 + 2 · 108 = 336 + 216 = 552 кв. ед.
∠ABC + ∠ACB = 180° - α
∠IBC + ∠ICB = (180° - α)/2 = 90° - α/2 (т.к. центр вписанной окружности лежит в точке пересечения биссектрис)
∠BIC = 180° - (∠IBC + ∠ICB) = 180° - 90° + α/2 = 90° + α/2
∠BKC = 180° - ∠BIC = 180° - 90° - α/2 = 90° - α/2 (сумма противоположных углов четырехугольника вписанного в окружность равна 180°)
∠BOC - центральный углу ∠BKC => ∠BOC = 2*∠BKC = 2*(90° - α/2) = 180° - α
т.к. ∠BAC + ∠BOC = α + 180° - α = 180°, то около ABOC можно описать окружность, но это та же окружность, которая описана около треугольника АВС и на ней лежит точка О. Что и требовалось доказать
ответ: доказано.