ABC равнобедр. треугольник, АС основание=32см, АВ и ВС сотроны, равные 20см) Расстояние от вершины М до плоскости обозначим МО) А расстояние от М до стороны треугольника обозначим МК МК=5) Тогда мы видим прямоугольный треугольник, МО перпендикуляр, тогда найдем МО по теореме Пифагора МО=√МК²-ОК² ОК-радиус вписанной окружности равнобедр. треуг-ка ОК=√(р-а)²(р-в)/√р р-полупериметр, а-боковая сторона равная 20, в -основание равное 32) р=Р/2=2а+в/2=2*20+32/2=36см ОК=√(36-20)²(36-32)/√36=8/6=4/3см МО=√25-16/9=√209/√9=√209/3см
Треугольники АОС и ВОД равны, т.к. ОД=ОС, ОВ=АО и углы 1 и 2 вертикальные. Треугольники равны по первому признаку равенства треугольников. А в равных треугольниках против равных сторон лежат равные углы. Против стороны ОД лежит угол 3, а против стороны СО лежит угол 4. Стороны равны, значит и углы тоже равны. Но углы 3 и 4 являются накрест лежащими при прямых АС и ВД и секущей АВ. А если при пересечении двух прямых третьей окажется, что какие-нибудь накрест лежащие углы равны, то такие прямые параллельны. Значит, прямые АС и ВД параллельны.
Расстояние от вершины М до плоскости обозначим МО) А расстояние от М до стороны треугольника обозначим МК МК=5) Тогда мы видим прямоугольный треугольник, МО перпендикуляр, тогда найдем МО по теореме Пифагора МО=√МК²-ОК²
ОК-радиус вписанной окружности равнобедр. треуг-ка ОК=√(р-а)²(р-в)/√р
р-полупериметр, а-боковая сторона равная 20, в -основание равное 32)
р=Р/2=2а+в/2=2*20+32/2=36см
ОК=√(36-20)²(36-32)/√36=8/6=4/3см
МО=√25-16/9=√209/√9=√209/3см