Көмектесіндерші өтінемін 5сынып алдын ала рахмет кімде мынадай жаратылыстану кітабы бар. @31.табиғаттағы зат айналымы @44 оқығандар барма сол тақырыптарға сұрақ қойыу керек. б.lll.əбдіманапов,а.у.əбілғазиев
Решение: Так как по условию треугольник ΔABC - равносторонний, то все его стороны равны, то есть AB = BC = AC, следовательно
CM = MA = AK = BK = BN = CN. По свойствам равностороннего треугольника (ΔABC) все его углы равны 60°, тогда ∠ACB = ∠CAB =
= ∠CBA = 60°. Треугольник ΔMAK = ΔBKN по первому признаку равенства треугольников, так как MA = KA = KB = BN и ∠CAB = ∠CBA = 60°. Так как по условию M,N - середины сторон CA,CB, то отрезок MN - средняя линия, тогда по теореме средняя линия параллельна стороне с которой не имеет общих точек, то есть MN║AB. Так как по условию K,N - середины сторон AB,CB, то отрезок KN - средняя линия, тогда по теореме средняя линия параллельна стороне с которой не имеет общих точек, то есть KN║AC. По теореме AMNK - параллелограмм, так как MN║AB и KN║AC, следовательно по свойствам параллелограмма его противоположные стороны равны, тогда MN = AK, MA = KN. Треугольник ΔMAK = ΔMKN по третьему признаку равенства треугольников, так как MK - общая, а MN = KA, AM = KN - как противоположные стороны параллелограмма AMNK. Так как треугольник ΔMAK = ΔMKN и треугольник ΔMAK = ΔBKN, то
ΔMAK = ΔMKN = ΔBKN. Так как треугольники равны, то их соответствующие элементы равны, то есть так как , то
квадратных единиц.
квадратных единиц.
2.
Если в комнате можно разместить все ковры, то сумма площадей ковров должна быть меньше или равна площади комнаты.
15 м² ∨ 4 м² + 5 м² + 7 м²
15 м² ∨ 16 м²
15 м² < 16 м²
Так как площадь, ковров больше площади комнаты, то ковры перекроются.
3. Теперь, зная чему равны все углы треугольника, мы можем найти длину высоты CD, применяя 2-е свойство прямоугольных треугольников: «катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы»
Т.к. в треугольнике CBD катет BC лежит перед прямым углом CDB, теперь он будет являться гипотенузой этого треугольника.
Объяснение:
1.
Примечание:
Рисунок отличается от рисунка в условии. Следует понимать, что .
Дано: ΔABC - равносторонний, CM = MA,AK = BK, BN = CN,
Найти: - ?
Решение: Так как по условию треугольник ΔABC - равносторонний, то все его стороны равны, то есть AB = BC = AC, следовательно
CM = MA = AK = BK = BN = CN. По свойствам равностороннего треугольника (ΔABC) все его углы равны 60°, тогда ∠ACB = ∠CAB =
= ∠CBA = 60°. Треугольник ΔMAK = ΔBKN по первому признаку равенства треугольников, так как MA = KA = KB = BN и ∠CAB = ∠CBA = 60°. Так как по условию M,N - середины сторон CA,CB, то отрезок MN - средняя линия, тогда по теореме средняя линия параллельна стороне с которой не имеет общих точек, то есть MN║AB. Так как по условию K,N - середины сторон AB,CB, то отрезок KN - средняя линия, тогда по теореме средняя линия параллельна стороне с которой не имеет общих точек, то есть KN║AC. По теореме AMNK - параллелограмм, так как MN║AB и KN║AC, следовательно по свойствам параллелограмма его противоположные стороны равны, тогда MN = AK, MA = KN. Треугольник ΔMAK = ΔMKN по третьему признаку равенства треугольников, так как MK - общая, а MN = KA, AM = KN - как противоположные стороны параллелограмма AMNK. Так как треугольник ΔMAK = ΔMKN и треугольник ΔMAK = ΔBKN, то
ΔMAK = ΔMKN = ΔBKN. Так как треугольники равны, то их соответствующие элементы равны, то есть так как , то
квадратных единиц.
квадратных единиц.
2.
Если в комнате можно разместить все ковры, то сумма площадей ковров должна быть меньше или равна площади комнаты.
15 м² ∨ 4 м² + 5 м² + 7 м²
15 м² ∨ 16 м²
15 м² < 16 м²
Так как площадь, ковров больше площади комнаты, то ковры перекроются.
1. Высота CD — это перпендикуляр, проведенный из вершины к противолежащей стороне. Значит ∠ВDС = ∠CDA = 90°.
Зная это, мы можем найти ∠ACD.
∠ACD = ∠CDA −∠CAD = 90° − 60° = 30° (согласно 1-му свойству прямоугольных треугольников: «сумма двух острых углов прямоугольного треугольника равна 90°»)
2. Теперь узнаем, чему равен угол BCD и угол DBC:
∠BCD = ∠ACB −∠ACD = 90° − 30° = 60°
∠DBC = ∠ВDС −∠BCD = 90° − 60° = 30°
3. Теперь, зная чему равны все углы треугольника, мы можем найти длину высоты CD, применяя 2-е свойство прямоугольных треугольников: «катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы»
Т.к. в треугольнике CBD катет BC лежит перед прямым углом CDB, теперь он будет являться гипотенузой этого треугольника.
Значит, CD = ¹/₂BC
CD = 5 ÷ 2 = 2,5.
ответ: ∠BCD = 60°; CD = 2,5 см.