Кінці відрізка належать двом взаємно перпендикулярними площинам. Проекції відрізка на першу і другу площини відповідно дорівнюють 3√3 см і 3√2 см. Кінець відрізка, що належить другій площині, віддалений від прямої перетину площини на 3 см. Знайдіть кути між відрізками
Пусть АВС - прямоугольный треугольник с прямым углом С. Внешний угол при вершине С равен 90° (так как является смежным с внутренним прямым углом). Значит, 135° - это внешний угол при вершине острого угла. Пусть внешний угол при вершине А равен 135°. Тогда ∠А = 180° - 135° = 45°. Сумма острых углов прямоугольного треугольника равна 90°. Значит, ∠В = 90° - ∠А = 45°. То есть, ΔАВС равнобедренный, АС = ВС. Пусть АС = ВС = х. По теореме Пифагора АВ² = АС² + ВС² (5√2)² = x² + x² 2x² = 50 x² = 25 x = 5 (x = - 5 не подходит по смыслу задачи)
Дано
прямоуг. трап. ABCD
AC | BD - диагонали
/ ACD = 60
Док-ть
BD=1/2(BC+AD)
Док-во
1) Рассм. тр. ACD
/ ACD = 60
/ ADC = 90 (AC | BD)
⇒ / CAD = 180-90-60 = 30
2) Рассм. тр. AOD
/ AOD = 90 (AC | BD)
/ DAO = 30
⇒ / ADO = 180-30-90 = 60
Значит OD=1/2*AD (в прям. тр. с углами 30, 60, 90, катет лежащий против угла в 30 равен половине гипотенузы)
3) Рассм. тр BOC
/ BOC = 90 (AC | BD)
/ OCB = 30 (по условию трап. прям. - / BCD = 90)
⇒ / CBO = 180-90-30 = 60
Значит BO=1/2*BC ((в прям. тр. с углами 30, 60, 90, катет лежащий против угла в 30 равен половине гипотенузы)
3) BD=BO+OD
BD=1/2*AD+1/2*BC = 1/2(AD+BC)
ч.т.д.
Внешний угол при вершине С равен 90° (так как является смежным с внутренним прямым углом).
Значит, 135° - это внешний угол при вершине острого угла.
Пусть внешний угол при вершине А равен 135°.
Тогда ∠А = 180° - 135° = 45°.
Сумма острых углов прямоугольного треугольника равна 90°. Значит,
∠В = 90° - ∠А = 45°.
То есть, ΔАВС равнобедренный, АС = ВС.
Пусть АС = ВС = х.
По теореме Пифагора
АВ² = АС² + ВС²
(5√2)² = x² + x²
2x² = 50
x² = 25
x = 5 (x = - 5 не подходит по смыслу задачи)
АС = ВС = 5 см