Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
1) Все диаметры окружности равны между собой – верно. Диаметр - отрезок, проходящий через центр окружности и равен двум радиусам. Все радиусы одной окружности равны.
2) Сумма углов любого треугольника равна 360 градусам – неверно. Сумма углов любого треугольника 180°
3) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом. Верно. В параллелограмме противоположные стороны равны и параллельны. Если равны и соседние стороны, то все стороны равны. Параллелограмм, все стороны которого равны – ромб.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Диаметр - отрезок, проходящий через центр окружности и равен двум радиусам. Все радиусы одной окружности равны.
2) Сумма углов любого треугольника равна 360 градусам – неверно. Сумма углов любого треугольника 180°
3) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом. Верно.
В параллелограмме противоположные стороны равны и параллельны. Если равны и соседние стороны, то все стороны равны. Параллелограмм, все стороны которого равны – ромб.