При центральной симметрии отрезок отображается в равный и параллельный ему отрезок.
Стороны шестиугольника А₁А₂ и А₄А₅ равны и параллельны, значит эти отрезки центрально-симметричны. Центр симметрии - точка пересечения отрезков А₁А₄ и А₂А₅ - точка О. По определению центральной симметрии точка О - середина этих отрезков.
Аналогично, отрезки А₂А₃ и А₅А₆ центрально-симметричны относительно точки пересечения отрезков А₂А₅ и А₃А₆, которая является их серединой. Но середина отрезка А₂А₅ - точка О, значит точка О и середина отрезка А₃А₆. Итак, все диагонали пересекаются в одной точке.
При центральной симметрии отрезок отображается в равный и параллельный ему отрезок.
Стороны шестиугольника А₁А₂ и А₄А₅ равны и параллельны, значит эти отрезки центрально-симметричны. Центр симметрии - точка пересечения отрезков А₁А₄ и А₂А₅ - точка О. По определению центральной симметрии точка О - середина этих отрезков.
Аналогично, отрезки А₂А₃ и А₅А₆ центрально-симметричны относительно точки пересечения отрезков А₂А₅ и А₃А₆, которая является их серединой. Но середина отрезка А₂А₅ - точка О, значит точка О и середина отрезка А₃А₆. Итак, все диагонали пересекаются в одной точке.
OK=ON=OE-это все радиусы вписанной окружности в трапецию
ОС -биссектриса <C, OD-биссектриса <D
<C+<D=180, значит <KCO+<KDO=90-как сумма половинок углов С и D
ΔCOD-прямоугольный так как <COD=180-( <KCO+<KDO)=90
ОК в нем высота, тогда
OK^2=CK*KD(теорема: высота в прямоугольном треугольнике из прямого угла-это средне геометрическое отрезков, на которые она делит гипотенузу)
OK^2=10*40=400
OK=20=ON
SK^2=OK^2+SO^2=400+125=525
SK=√525=5√21
OC^2=OK^2+CK^2=400+100=500
OC=10√5
SC^2=OC^2+SO^2=500+125=625
SC=25
1-Г
2-Д
3-А
4-Б