К-середина стороны ромба, МК=12 см - перпендикуляр, проведен к плоскости ромба. Постройте перпендикуляры, проведены с точки М к диагоналям ромба. Найдите длины этих перпендикуляров если сторона ромба равна 20 см, а угол 60 градусов
Найдите сторону равнобокой трапеции, основания которой равны 10 и 8, а диагонали перпендикулярны боковым сторонам. ––––––––––––––––––––––––––––––––––––––––––––––– Вариант решения. Опустим высоту из тупого угла. Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований. Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда х²=10*1=10 х=√10 см
Пирамида усечена плоскостью, параллельной основанию.
Отсеченная пирамида подобна исходной 6:8 =3:4
Следовательно, части, заключенные между плоскостями, относятся к исходным 1:4.
Найдем высоту и апофему исходной пирамиды.
Правильная пирамида, в основании квадрат, вершина падает в центр основания.
Центр описанной окружности квадрата - пересечение диагоналей.
Диагонали квадрата перпендикулярны, равны, точкой пересечения (O) делятся пополам.
AO =AB sin45 =8*√2/2 =4√2
SO⊥(ABC), SAO=60
SO =AO tg60 =4√2*√3 =4√6 (исходная высота)
Боковые грани правильной пирамиды - равнобедренные треугольники.
Высота боковой грани - апофема - является медианой.
K - середина AB, KO=AB/2=4 (медиана из прямого угла)
SK =√(SO^2+KO^2) =4√(1+6) =4√7 (исходная апофема)
OO1/SO =KK1/SK =1/4
высота усеченной пирамиды OO1=√6 (см)
апофема усеченной пирамиды KK1=√7 (см)
–––––––––––––––––––––––––––––––––––––––––––––––
Вариант решения.
Опустим высоту из тупого угла.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда
х²=10*1=10
х=√10 см