Объяснение:Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin. (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a Докажем формулу (3) Применяя последнюю формулу имеем sin(. ... ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где n ÎN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 ±a), sin(пи*n/2 ±a). Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы: Sin.
1) Точки С делит отрезок АВ в отношении пять к трем считая от точки А, значит ВС:СА=3:5, значит ВС:ВА=3:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=3/8ВА. ВС=(3/8*(-20);3/8*(-4)), ВС(-15/2;-3/2).
Имеем В(-9;-4), ВС(-15/2;-3/2), то С( -15/2-9;-3/2-4), С(-16,5;-5,5)
Примечание: Координаты вектора правильно писать в фигурных скобках, а коордитнты точки- в круглых
2) Точки С делит отрезок АВ в отношении пять к трем считая от точки В, значит ВС:СА=5:3, значит ВС:ВА=5:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=5/8ВА. ВС=(5/8*(-20);5/8*(-4)), ВС(-25/2;-5/2).
Имеем В(-9;-4), ВС(-25/2;-5/2), то С( -25/2-9;-5/2-4), С(-21,5;-6,5)
ответ: например
Объяснение:Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin. (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a Докажем формулу (3) Применяя последнюю формулу имеем sin(. ... ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где n ÎN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 ±a), sin(пи*n/2 ±a). Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы: Sin.
С(-16,5;-5,5) или С(-21,5;-6,5)
Объяснение:
1) Точки С делит отрезок АВ в отношении пять к трем считая от точки А, значит ВС:СА=3:5, значит ВС:ВА=3:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=3/8ВА. ВС=(3/8*(-20);3/8*(-4)), ВС(-15/2;-3/2).
Имеем В(-9;-4), ВС(-15/2;-3/2), то С( -15/2-9;-3/2-4), С(-16,5;-5,5)
Примечание: Координаты вектора правильно писать в фигурных скобках, а коордитнты точки- в круглых
2) Точки С делит отрезок АВ в отношении пять к трем считая от точки В, значит ВС:СА=5:3, значит ВС:ВА=5:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=5/8ВА. ВС=(5/8*(-20);5/8*(-4)), ВС(-25/2;-5/2).
Имеем В(-9;-4), ВС(-25/2;-5/2), то С( -25/2-9;-5/2-4), С(-21,5;-6,5)