Площади подобных многоугольников относятся как квадраты их соответственных сторон.Пусть S1- площадь меньшего многоугольника, а S2 - большего. Пусть Ai - i-я сторона меньшего многоугольника (i=1,,n), а Bi - сторона большего многоугольника. Тогда Ai/Bi=√(S1/S2)=√(4/9)=2/3. Но тогда периметр меньшего многоугольника P1=∑Ai=2/3*∑Bi=P2, где P2- периметр большего многоугольника. По условию, P2=P1+10. А так как P1=2/3*P2, то получаем уравнение P2=2/3*P2+10, откуда P2/3=10 см и P2=30 см. А тогда P1=2/3*30=20 см. ответ: 20 см и 30 см.
AK , A₁D₁ ⊂ (ADD₁)
Найдём пересечение этих прямых: AK ∩ A₁D₁ = K₁
BK , B₁D₁ ⊂ (BDD₁)
Найдём пересечение этих прямых: BK ∩ B₁D₁ = K₂
K₁ ∈ AK ⊂ (ABK); K₂ ∈ BK ⊂ (ABK) ⇒ K₁K₂ ⊂ (ABK).
K₁ ∈ A₁D₁ ⊂ (B₁C₁D₁); K₂ ∈ B₁D₁ ⊂ (B₁C₁D₁) ⇒ K₁K₂ ⊂ (B₁C₁D₁);
K₁K₂ , B₁C₁ ⊂ (B₁C₁D₁)
Найдём пересечение этих прямых: K₁K₂ ∩ B₁C₁ = M₁
M₁ ∈ B₁C₁ ⊂ (BCC₁); B ∈ (BCC₁) проведём прямую через две точки, лежащие в одной плоскости с ребром CC₁
Получаем, что BM₁ ∩ CC₁ = M.
M₁ ∈ K₁K₂ ⊂ (ABK); B ∈ (ABK) ⇒ BM₁ ⊂ (ABK); M ∈ M₁B ⊂ (ABK) ⇒ M ∈ (ABK).
ABMK - нужное, четырёхугольное, сечение.