Сумма углов треугольника равна 180.
∠A+∠B+∠C=180
В треугольнике AOB
∠A/2 +∠B/2 +∠AOB =180 => 2∠AOB -∠C =180
∠AOB=∠MON (вертикальные углы)
Сумма противоположных углов вписанного четырехугольника равна 180.
В четырехугольнике CMON
∠MON +∠C =180 => ∠MON=120
CO - биссектриса ∠MON, ∪OM=∪ON => OM=ON (хорды, стягивающие равные дуги)
Треугольник MON равнобедренный, проведем высоту к основанию, в полученном прямоугольном треугольнике катет против угла 60 равен √3/2, следовательно гипотенуза равна 1.
OM=ON=1
Или по теореме косинусов
MN^2= 2OM^2(1-cos(MON)) <=> OM=1
1.
AB=9.6 м
BC=7.2 м
CE =3.6 м - высота к большей стороне
AH - ? - высота к меньшей стороне
S(abc)=1/2*a*h
S(abc)=1/2*AB*CE=1/2*9.6*3.6=17.28 м^2
S(abc)=1/2*BC*AH=1/2*7.2*AH ⇒ AH=S(abc)/3.6=17.28/3.6=4.8 м
высота к меньшей стороне равна 4.8м
2.
AB=BC=12 см
AC = 20 см - основание
S=1/2*a*h
Проведем высоту BH - в равнобед. тр. высота является медианой и биссектрисой ⇒ AH=HC = 1/2*AC = 10 см
По т. Пифагора:
BH=√AB^2-AH^2=√12^2-10^2=√144-100=√44=2√11 см
S(abc)=1/2*20*2√11=10*2√11=20√11 см^2
площадь равнобедренного треугольника равна 20√11 см^2
Сумма углов треугольника равна 180.
∠A+∠B+∠C=180
В треугольнике AOB
∠A/2 +∠B/2 +∠AOB =180 => 2∠AOB -∠C =180
∠AOB=∠MON (вертикальные углы)
Сумма противоположных углов вписанного четырехугольника равна 180.
В четырехугольнике CMON
∠MON +∠C =180 => ∠MON=120
CO - биссектриса ∠MON, ∪OM=∪ON => OM=ON (хорды, стягивающие равные дуги)
Треугольник MON равнобедренный, проведем высоту к основанию, в полученном прямоугольном треугольнике катет против угла 60 равен √3/2, следовательно гипотенуза равна 1.
OM=ON=1
Или по теореме косинусов
MN^2= 2OM^2(1-cos(MON)) <=> OM=1
1.
AB=9.6 м
BC=7.2 м
CE =3.6 м - высота к большей стороне
AH - ? - высота к меньшей стороне
S(abc)=1/2*a*h
S(abc)=1/2*AB*CE=1/2*9.6*3.6=17.28 м^2
S(abc)=1/2*BC*AH=1/2*7.2*AH ⇒ AH=S(abc)/3.6=17.28/3.6=4.8 м
высота к меньшей стороне равна 4.8м
2.
AB=BC=12 см
AC = 20 см - основание
S=1/2*a*h
Проведем высоту BH - в равнобед. тр. высота является медианой и биссектрисой ⇒ AH=HC = 1/2*AC = 10 см
По т. Пифагора:
BH=√AB^2-AH^2=√12^2-10^2=√144-100=√44=2√11 см
S(abc)=1/2*20*2√11=10*2√11=20√11 см^2
площадь равнобедренного треугольника равна 20√11 см^2