M- точка пересечения диагоналей. Прямоугольные треугольники ADM и ADE подобны, то есть AM/AB = AB/AE; или AM*AE = AB^2; Ясно, что AM = AC/2; Для AE возможны два варианта 1) точка E лежит ВНУТРИ ромба. В этом случае угол A ромба острый. AE = AC - CE; Получается уравнение (AC/2)*(AC - 12) = 8^2*5; AC^2 - 12*AC - 640 = 0 ; или AC = 32; отсюда AM = 16; BM^2 = (8^2*5 - 16^2) = 8^2; BD = 2*BM = 16; это меньшая диагональ. 2) точка E лежит ВНЕ ромба. В этом случае угол A ромба тупой. AE = AC + CE; Получается уравнение (AC/2)*(AC + 12) = 8^2*5; AC^2 + 12*AC - 640 = 0; или AC = 20; это меньшая диагональ. В задаче есть 2 варианта решения - в зависимости от того, где лежит точка E (или - какой угол A - острый или тупой).
Xm=(Xa+Xb)/2 = (4-2)/2=1. Ym=(Ya+Yb)/2= (5-1)/2=2. M(1;2). Xk=(Xa+Xb)/2 = (-2-2)/2=-2. Yk=(Ya+Yb)/2= (5+3)/2=4. K(-2;4).
б) |MC|=√[(Xc-Xm)²+(Yc-Ym)²]=√[(-2-1)²+(3-2)²]=√10.
|KB|=√[(Xb-Xk)²+(Yb-Yk)²]=√[(4+2)²+(-1-4)²]=√61.
в) |MK|=(1/2)*|BC|. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=
√[(-2-4)²+(3+1)²]=√52. |MK|=√52/2=√13.
Или так: |MK|=√[(Xk-Xm)²+(Yk-Ym)²]=√[(-2-1)²+(4-2)²]=√13.
г) |AB|=√[(Xb-Xa)²+(Yb-Ya)²]=√[(4+2)²+(-1-5)²]=6√2. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=√[(-2-4)²+(3+1)²]=√52.
|AC|=√[(Xc-Xa)²+(Yc-Ya)²]=√[(-2+2)²+(3-5)²]=2.
Прямоугольные треугольники ADM и ADE подобны, то есть AM/AB = AB/AE; или
AM*AE = AB^2;
Ясно, что AM = AC/2; Для AE возможны два варианта
1) точка E лежит ВНУТРИ ромба. В этом случае угол A ромба острый.
AE = AC - CE;
Получается уравнение (AC/2)*(AC - 12) = 8^2*5; AC^2 - 12*AC - 640 = 0 ;
или AC = 32; отсюда AM = 16; BM^2 = (8^2*5 - 16^2) = 8^2; BD = 2*BM = 16; это меньшая диагональ.
2) точка E лежит ВНЕ ромба. В этом случае угол A ромба тупой.
AE = AC + CE;
Получается уравнение (AC/2)*(AC + 12) = 8^2*5; AC^2 + 12*AC - 640 = 0;
или AC = 20; это меньшая диагональ.
В задаче есть 2 варианта решения - в зависимости от того, где лежит точка E (или - какой угол A - острый или тупой).