Высоты вместе с боковыми сторонами образуют два прямоугольных треугольника.В одном из них угол 45 градусов, значит он равнобедренный, так как и второй острый угол равен 45.Значит катеты равны 6см.Найдем гипотенузу, которая является боковой стороной, по теореме Пифагора: √36+36=√72=6√2см. Во втором треугольнике высота лежит против угла в 30 градусов,значит она равна 1/2 гипотенузы, которая является второй боковой стороной, то есть гипотенуза равна 12см. ответ: боковые стороны равны 6√2см и 12см.
Трапеция АВСД с углом А=30° и углои Д=60°. Достроим высоты ВН и СН1. Треуг. ДСН1 прямоуг. угол ДСН1=30° и значит противолежащий катет(Н1Д) будет оавен половине гипотенузы. Пусть Н1Д = х, тогда СД=2х, по теор Пифагора находим высоту СН1, она равна х корней из 3-ех. ВН=СН1, ВН лежит напротив угла в 30° и значит она в два раза меньше гипотенузы. АВ=2х корней из 3-ех. И по теор. Пифагора находим АН, АН^2=12х^2-3х^2=9х^2. АН=3х. И получается уровнение: 8-4-х=3х (основание АД-НД(которое равно х)-НН1(верхнее основание)), 4х=4, х=1. Тогда правая сторона трапеции равна 2, а левая - 2 корня из 3-ех
Во втором треугольнике высота лежит против угла в 30 градусов,значит она равна 1/2 гипотенузы, которая является второй боковой стороной, то есть гипотенуза равна 12см. ответ: боковые стороны равны 6√2см и 12см.