Все окружности, для которых отрезок BC является хордой и равен радиусу, построить НЕВОЗМОЖНО, так как таких окружностей бесконечно много. Если в окружности хорда равна радиусу, то значит треугольник, образованный этой хордой и двумя радиусами, проведеннысм к концам хорды, образуют правильный трецгольник. Строим правильный треугольник со стороной, равной АВ. Для этого на прямой "а" откладываем циркулем отрезок, равный данному и из концов А и В отрезка радиусами, равными АВ, делаем "засечки" по обе стороны от прямой "а". Соединив "засечки" с точками А и В отрезками, получаем два равносторонних треугольника со сторонами, равными АВ. Проведя окружности радиусами АВ с центрами в вершинах получившихся треугольников, имеем окружности, которые надо было построить. Далее можно продолжать до бесконечности, строя окружности с центрами в точках пересечения полученных окружностей. У всех этих окружностей хорды и радиусы будут равны отрезку АВ.
Площадь выпуклого многоугольника можно посчитать по известной формуле:
S = p•r , где р - это полупериметр , r - радиус вписанной окружности.
Если в четырёхугольник вписана окружность, то сумма её двух противолежащих сторон равна сумме двух других противолежащих сторон.
Боковые стороны в равнобедренной трапеции равны, поэтому сумма противоположных сторон равна: 70 + 70 = 140 см, и ещё + 140 см, получаем периметр трапеции = 280 см, но нам нужен полупериметр, поэтому 280/2 = 140 см
Если в окружности хорда равна радиусу, то значит треугольник, образованный этой хордой и двумя радиусами, проведеннысм к концам хорды, образуют правильный трецгольник.
Строим правильный треугольник со стороной, равной АВ. Для этого на прямой "а" откладываем циркулем отрезок, равный данному и из концов А и В отрезка радиусами, равными АВ, делаем "засечки" по обе стороны от прямой "а". Соединив "засечки" с точками А и В отрезками, получаем два равносторонних треугольника со сторонами, равными АВ. Проведя окружности радиусами АВ с центрами в вершинах получившихся треугольников, имеем окружности, которые надо было построить.
Далее можно продолжать до бесконечности, строя окружности с центрами в точках пересечения полученных окружностей. У всех этих окружностей хорды и радиусы будут равны отрезку АВ.
Площадь выпуклого многоугольника можно посчитать по известной формуле:
S = p•r , где р - это полупериметр , r - радиус вписанной окружности.
Если в четырёхугольник вписана окружность, то сумма её двух противолежащих сторон равна сумме двух других противолежащих сторон.
Боковые стороны в равнобедренной трапеции равны, поэтому сумма противоположных сторон равна: 70 + 70 = 140 см, и ещё + 140 см, получаем периметр трапеции = 280 см, но нам нужен полупериметр, поэтому 280/2 = 140 см
S = p•r = 140•25 = 35•4•25 = 3 500 см^2
ответ: 3 500 см^2