Как найти координаты x и y точки o1 отрезка o1o3 , если o2(7; -2) середина отрезка, а точка o3 имеет координаты (13; 4) 1) x=2x13-7; y=-2x4-2 2)x=-2x2-2x13; y=2x2-4 3)x=2x4-13; y=-2x4-4 4)=7x7-13; y=4x4-2 5)x=2x7-13; y=-2x2-4
ромб - параллелограмм, у кот.все стороны равныдиагонали ромба перпендикулярны и делятся точкой пересечения пополам (как и у любого параллелограмма)диагонали ромба - биссектрисы его угловромб ABCD AB=BC... AB=BD => треугольник ABD - равностороннийв равностороннем треугольнике все стороны и все углы равны => BAD = 180/3=60 = BDA = DBABD - биссектриса CDA => CDA = 2BDA = 2*60 = 120BAD = BCD, CDA = CBA (т.к. ромб - это параллелограмм)вторая диагональ AC = AO + OCиз ABO (AB=10, BO=5) по т.Пифагора AO = корень(10*10-5*5) = корень(100-25) = корень(75) = корень(25*3) = 5*корень(3)
Начнём. По свойству, биссектриса внутреннего угла делит противолижащию сторону на отрезки, пропорциональные прилегающим сторонам. Вот у нас биссектриса делит гипотенузу в отношении 3:4. Тогда, стороны (назовём их а и b) также относятся: a:b=3:4. Пусть один отрезок гипотенузы будет равен 3х, тогда второй отрезок - 4х. Пусть сторона а=3у, тогда b=4у. Гипотенуза (назовём её с) = 3х+4х = 7х. По теореме Пифогара: a^2+b^2=c^2 <=>
9y^2+16y^2=49x^2
25y^2=49x^2
5у=7х
х=5/7*у
P (периметр)=a+b+c=4у+3у+7х=7у+5у=12у. Осталось найти у.
Назовём треугольник ABC, угол С - прямой. СМ - биссектриса. Биссектриса делит угол пополам, значит, угол АСМ = 45гр.
Рассмотрим треугольник АСМ, по теореме косинусов:
с^2=a^2+b^2-2*a*b*cosC (Любая сторона треугольника равна сумме квадратов её двух других сторон без (минус) удвоенного произведения этих сторон на косинус угла между ними.)
Начнём. По свойству, биссектриса внутреннего угла делит противолижащию сторону на отрезки, пропорциональные прилегающим сторонам. Вот у нас биссектриса делит гипотенузу в отношении 3:4. Тогда, стороны (назовём их а и b) также относятся: a:b=3:4. Пусть один отрезок гипотенузы будет равен 3х, тогда второй отрезок - 4х. Пусть сторона а=3у, тогда b=4у. Гипотенуза (назовём её с) = 3х+4х = 7х. По теореме Пифогара: a^2+b^2=c^2 <=>
9y^2+16y^2=49x^2
25y^2=49x^2
5у=7х
х=5/7*у
P (периметр)=a+b+c=4у+3у+7х=7у+5у=12у. Осталось найти у.
Назовём треугольник ABC, угол С - прямой. СМ - биссектриса. Биссектриса делит угол пополам, значит, угол АСМ = 45гр.
Рассмотрим треугольник АСМ, по теореме косинусов:
с^2=a^2+b^2-2*a*b*cosC (Любая сторона треугольника равна сумме квадратов её двух других сторон без (минус) удвоенного произведения этих сторон на косинус угла между ними.)
с=АМ, АМ=4х=4*5/7*у=20/7*у
(20/7*у)^2=(4y)^2+(24√2)^2-2*4y*24√2*cos45гр (cos45гр=√2/2)
400/49*y^2=16y^2+1152-192y
384/49*y^2-192y+1152=0
Решаем это квадратное уравнение:
a=384/49, b=192, c=1152
k=96
y1=(-k-√(k^2-a*c))/a y1=считать не надо, так как он будет отрицательный, а нам нужен положительный корень
y2=(-k+√(k^2-a*c))/a y2=14
P=12*14=168
ответ: 168.