ΔАВК: ∠К = 90°, ∠А = 30°, ⇒ АВ = 2ВК = 2 см по теореме Пифагора АК = √(АВ² - ВК²) = √(4 - 1) = √3 см Проведем высоту СН. СН = ВК как высоты одной трапеции, СН ║ ВК как перпендикуляры к одной прямой, значит, КВСН - прямоугольник. КН = ВС = 2√3 см
ΔАВК = ΔDCH по гипотенузе и катету (AB = CD так трапеция равнобедренная и СН = ВК), значит AK = HD = 2√3 см KD = KH + HD = 3√3 см Проведем МР⊥AD. МР - средняя линия треугольника KBD, МР = ВК/2 = 0,5 см
Объяснение:
Разделим тождество на две части и решим каждого:
1+ tg×(180°- a)×sin×(90°-a)×sin a = cos²×(180°- a)
1) 1+ tg×(180°- a)×sin×(90°-a)×sin a
Сначало по формулам приведения переведем тригоном. функции:
1-tg a × cos a × sin a
Дальше,раскрываем тангенс по формуле: tg a =sin a/cos a :
1-sin a/cos a × cos a × sin a
Сокращаем cos a и получаем:
1-sin² a=> по осн. тригоном. тожд. => cos² a
2)cos²×(180°- a)
Воспользуемся формулой приведения:
cos²×(180°- a)= - cos²a
По основ. тригоном.тождеству sin²a+cos²a=1 =>cos²a=1-sin²a :
- cos²a = -(1-sin²a) = -1+sin²a=sin²a-1=cos²a
В первой части тождества получили: cos² a
И во второй части получили: cos² a
Поэтому:
cos² a=cos² a
Ч.т.д
по теореме Пифагора АК = √(АВ² - ВК²) = √(4 - 1) = √3 см
Проведем высоту СН.
СН = ВК как высоты одной трапеции, СН ║ ВК как перпендикуляры к одной прямой, значит, КВСН - прямоугольник.
КН = ВС = 2√3 см
ΔАВК = ΔDCH по гипотенузе и катету (AB = CD так трапеция равнобедренная и СН = ВК), значит
AK = HD = 2√3 см
KD = KH + HD = 3√3 см
Проведем МР⊥AD. МР - средняя линия треугольника KBD,
МР = ВК/2 = 0,5 см
Skmd = 1/2 · KD · MP = 0,5 · 3√3 · 0,5 = 3√3/4 см²