Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Пусть прямоугольник будет АВСД, а окружность имеет центр О.
Короткая сторона прямоугольника СД = АВ равна диаметру окружности (10см), следовательно, длинная сторона ВС=АД прямоугольника равна 17см.
Отрезок ОВ наклонён по углом 45°к сторонам АВ и ВС, поэтому ОВ √R² + R² = 5 √2.
ОА = ОВ = 5√2.
ОС = ОД = √((17 - 5)² + 5²) = √(144 + 25) = 13
Сумма расстояний от О до А, В, С, Д равна:
ОА +ОВ +ОС +ОД = 5√2 + 5√2 + 13 + 13 = 26 + 10√2
ответ: сумма расстояний от центра круга до вершин прямоугольника равна
(26 + 10√5)см