Интересно, где Вы учитесь, если такие задачи задают. Вот решение этой задачи без теории (вывод формул ищите в учебнике или в записях занятий) Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3; Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции ρ1/r = r/r1; и то же самое для двух других. то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3; Остается подставить это в известные соотношения 1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3; и 4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности. то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3; это все. Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях. К примеру, площадь S исходного треугольника равна S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда 1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r; Вывод формулы для R намного сложнее технически, но по сути - то же самое.
Летние каникулы всегда приносят приятные впечатления. позади остались уроки, школьные звонки и переменки, а впереди – ожидание чего-то хорошего. вдвоем с сестрой мы ухаживаем за нашими овощами. на нашей зеленой грядке растут укроп, петрушка, щавель и редис. мы с удовольствием поливаем и пропалываем свою зеленую грядку. и приятно слышать от мамы за обедом следующие слова: " какой удивительно вкусный салат получился из ваших овощей! какие вы умнички, мои девочки! " летом времени достаточно: можно и с подружками погулять, и в гости съездить, и в разные игры поиграть. но больше всего я поездки на море с родителями. я наконец-то научилась плавать этим летом и рада этому. море мне нравится. оно настолько глубокое и широкое, и такое загадочное, что иногда даже пугает своей непредсказуемостью. море бывает одновременно близким и далеким, теплым и прохладным. а как приятно в летний жаркий день окунуться в свежую прохладную воду! и плавать, нырять, плескаться! я разложил на столе морские раковины. прикладывая их к уху, я различаю шум прибоя. и можно почувствовать силу морской волны, которая летит, и попадая на камень, выбрасывает мне в лицо множество ярких соленых брызг. мне весело, я смеюсь вместе со всеми: с родителями, морем, солнцем и чайками. лето пролетает стремительно, и уже снова приближается сентябрь. но это и неплохо, ведь совсем скоро я смогу увидеться со своими одноклассниками, поделиться со всеми друзьями и подружками своими летними впечатлениями. а еще хочется поскорее начать учиться, и вновь радовать своими успехами маму с папой.
Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3;
Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции
ρ1/r = r/r1; и то же самое для двух других.
то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3;
Остается подставить это в известные соотношения
1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3;
и
4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности.
то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3;
это все.
Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях.
К примеру, площадь S исходного треугольника равна
S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда
1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r;
Вывод формулы для R намного сложнее технически, но по сути - то же самое.