Как расположены относительно друг друга прямые ,содержащие биссектрисы внутренних односторонних углов , которые получились при пересечении двух параллельных прямых третьей:
А. Перпендикуляры
В. Параллельны
С. Пересекаются под углом 45 градусов
D. Пересекаются под углом 60 граудсов
2)так как трапеция прямоугольная, то диагональ делит трапецию на два треу-ка, один из которых прямоугольный
в этом треугольнике гипотенуза = 10, один из катетов = 8, то другой катет, являющийся меньшим основанием данной трапеции = √(100-64)=6
проведем высоту к большему основанию, которая будет равна 8 (т.к. в прямоугольнике противоположные стороны равны) и по т. Пифагора найдем отрезок большего основания трапеции, который образовался при проведении высоты = √(289-64)=15 см
другой отрезок основания = 6 (т.к. в прямоугольнике противоположные стороны равны). то большее основание равно 15+6=21 см
P=8+6+17+21=52 см
Прямоугольной трапецией называется трапеция, в которой хотя бы один угол прямой
угол А=90*, следовательно АД - высота
сделаем дополнительное построение
треугольники СС1О и ВВ1О равны по двум сторонам и углу между ними, следовательно СС1=ВВ1
С1О=В1О = 15/2=7,5
СО=ВО=17/2=8,5
по теореме Пифагора СС1= корень из (СО"-С1О") = корень из (72,25-56,25) = 4
средняя линия равна (а+в) /2
а=6-4=2
в=6+4=10
ответ: основания трапеции равны 2 и 10