Как решить данные задачи?
1.В основании прямой четырёхугольной призмы лежит прямоугольник со сторонами 3 см и 4 см. Диагональ призмы составляет с плоскостью основания угол 60. Найдите диагональ призмы.
2.В прямой треугольной призме стороны основания равны 7 см, 5 см и 4 см. Высота призмы равна высоте основания, опущенной на четную сторону. Найдите объём.
3.В правильной четырёхугольной призме диагональ основания равна 5 см, диагональ призмы равна 13 см. Найдите площадь полной поверхности.
4.Боковое ребро правильной треугольной призмы равно 9 см, а диагональ боковой грани равна 15 см. Найдите площадь боковой и полной поверхности.
ответ: 9 см
Объяснение: Соединим С и В. Угол АСВ опирается на диаметр и равен половине градусной меры дуги АВ. Угол АСВ=90°.
Отрезок СD - высота ∆ АСВ, АD и ВD - проекции катетов на гипотенузу. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.⇒ АС=√(AD•AB). Примем АD=х, тогда ВD=х+10, а гипотенуза АВ=2х+10. ⇒ х•(2х+10)=72.
Выполнив необходимые действия и сократив все члены на 2, получим приведенное квадратное уравнение х²+5х-36=0 По т.Виета сумма корней приведённого квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение – свободному члену.
х₁+х₂=-5
х₁•х₂=36
-36=-9+4
-5= -9+4 ⇒ х=4, (отрицательный корень -9 не подходит).
Диаметр АВ=4+14=18 см, а радиус, соответственно, 18:2=9 см
* * *
Ясно, что задачу можно решить и через дискриминант. ответ будет тем же.
ответ: 9 см
Объяснение: Соединим С и В. Угол АСВ опирается на диаметр и равен половине градусной меры дуги АВ. Угол АСВ=90°.
Отрезок СD – высота ∆ АСВ, АD и ВD - проекции катетов на гипотенузу. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.⇒ АС=√(AD•AB). Примем АD=х, тогда ВD=х+10, а гипотенуза АВ=2х+10. ⇒ х•(2х+10)=72.
Выполнив необходимые действия и сократив все члены на 2, получим приведённое квадратное уравнение х²+5х-36=0 По т.Виета сумма корней приведённого квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение – свободному члену.
х₁+х₂=-5
х₁•х₂=36
-36=-9•4
-5= -9+4 ⇒ х=4, (отрицательный корень не подходит).
Диаметр АВ=4+14=18 см, а радиус, соответственно, 18:2=9 см