Искомая площадь состоит из трех равных площадей треугольников, у которых есть высота - апофема боковой грани, нужно найти сторону основания. И тогда площадь боковой поверхности равна 3а*L/2, где а - сторона основания. Если соединить основание апофемы и и высоты пирамиды, получим проекцию апофемы на плоскость основания, и она равна (1/3) высоты треугольника, лежащего в основании. Зная апофему и угол между апофемой и высотой, найдем эту проекцию. Она равна L*sinα=а√3/2, отсюда сторона основания а =2L*sinα/√3=
2L*sinα*√3/3
Значит, площадь боковой поверхности равна (3*2L*sinα*√3/3)*L/2=
Пусть дана равнобедренная трапеция АВСD. АС и ВD - диагонали, угол между которыми равен 110⁰. Пусть точка пересечения диагоналей - точка О. Тогда угол ВОС=110⁰. угол АОDтоже равен 110⁰,как вертикальный к ВОС.Углы СОD=ВОА=70⁰,как смежные с углами ВОС и АОD. так как диагонали в данной трапеции равны, то треугольник АВС=ΔВСD по трем сторонам (АВ=ВС=СD и АС=ВD). Отсюда получим равные углы: ВАС=ВСА=СВD=СDВ. Они все равны по 35⁰((180 - 110)/2=35). Рассмотрим ΔВОА. В нем угол ВОА=70⁰ а угол ВАС=35⁰, тогда угол АВО=180-70-35=75⁰. Найдем углы: угол АВС= 75+35= 110⁰ ; аналогично угол ВСD=110⁰ ; угол ВАD= 35+35=70⁰ ; аналогично угол СDА=70⁰
Искомая площадь состоит из трех равных площадей треугольников, у которых есть высота - апофема боковой грани, нужно найти сторону основания. И тогда площадь боковой поверхности равна 3а*L/2, где а - сторона основания. Если соединить основание апофемы и и высоты пирамиды, получим проекцию апофемы на плоскость основания, и она равна (1/3) высоты треугольника, лежащего в основании. Зная апофему и угол между апофемой и высотой, найдем эту проекцию. Она равна L*sinα=а√3/2, отсюда сторона основания а =2L*sinα/√3=
2L*sinα*√3/3
Значит, площадь боковой поверхности равна (3*2L*sinα*√3/3)*L/2=
L²*√3sinα/ед. кв./
Пусть дана равнобедренная трапеция АВСD. АС и ВD - диагонали, угол между которыми равен 110⁰. Пусть точка пересечения диагоналей - точка О. Тогда угол ВОС=110⁰. угол АОDтоже равен 110⁰,как вертикальный к ВОС.Углы СОD=ВОА=70⁰,как смежные с углами ВОС и АОD. так как диагонали в данной трапеции равны, то треугольник АВС=ΔВСD по трем сторонам (АВ=ВС=СD и АС=ВD). Отсюда получим равные углы: ВАС=ВСА=СВD=СDВ. Они все равны по 35⁰((180 - 110)/2=35). Рассмотрим ΔВОА. В нем угол ВОА=70⁰ а угол ВАС=35⁰, тогда угол АВО=180-70-35=75⁰. Найдем углы: угол АВС= 75+35= 110⁰ ; аналогично угол ВСD=110⁰ ; угол ВАD= 35+35=70⁰ ; аналогично угол СDА=70⁰
ответ: 70⁰,110⁰,110⁰,70⁰