Δ ABC - правильный ⇒ АВ=ВС=АС и ∠А=∠В=∠С=60° DB=DA=DC=6 ⇒ равные наклонные имеют равные проекции NB=NA=NC ⇒ N - центр описанной окружности
∠ADN=∠BDN=CDN=30°
Из прямоугольного треугольника АDN R=AN=3 - катет против угла в 30° градусов равен половине гипотенузы. H(пирамиды)=DN=√(6²-3²)=√27=3√3 cм. По формуле нахождения радиуса R окружности, описанной около равностороннего треугольника cо стороной а: R=(a√3)/3 легко найти сторону треугольника.
3=(a√3)/3 ⇒a=3√3 см.
S(ΔABC)=(1/2)·a·a·sin60°=(a²√3)/4
При а=3√3 S(ΔABC)=(27√3)/4 - площадь основания
Для равностороннего треугольника N- является и центром вписанной окружности
NL=NK=r
r=(a√3)/6=3/2 Из Δ DNL по теореме Пифагора апофема боковой грани
h=DL=√(DN²+NL²)=√(27+(9/4))=3√10/2.
S (бок)=(1/2)·Р ( осн.) ·Н=(1/2)·(9√3·)(3√3)=81/2=40,5 кв см.
Апофемой правильной пирамиды называется высота боковой грани, проведенная из вершины пирамиды.
Основание правильной четырехугольной пирамиды - правильный четырёхугольник (квадрат), боковые грани - равнобедренные треугольники. Высота правильной четырехугольной пирамиды проецируется в точку пересечения диагоналей квадрата (основания), иначе – в центр вписанной в основание окружности.
Диаметр вписанной в квадрат окружности равен длине его стороны и перпендикулярен сторонам в точках касания. ⇒ ЕК=8, ЕК⊥РТ, ∆ ROK - прямоугольный. ОК=ОЕ=8:2=4. По т.Пифагора апофема RK=√(RO²+OK²)=√(7²+4²)=√65 (ед. длины)
DB=DA=DC=6 ⇒ равные наклонные имеют равные проекции
NB=NA=NC ⇒ N - центр описанной окружности
∠ADN=∠BDN=CDN=30°
Из прямоугольного треугольника АDN
R=AN=3 - катет против угла в 30° градусов равен половине гипотенузы.
H(пирамиды)=DN=√(6²-3²)=√27=3√3 cм.
По формуле нахождения радиуса R окружности, описанной около равностороннего треугольника cо стороной а:
R=(a√3)/3 легко найти сторону треугольника.
3=(a√3)/3 ⇒a=3√3 см.
S(ΔABC)=(1/2)·a·a·sin60°=(a²√3)/4
При а=3√3
S(ΔABC)=(27√3)/4 - площадь основания
Для равностороннего треугольника N- является и центром вписанной окружности
NL=NK=r
r=(a√3)/6=3/2
Из Δ DNL по теореме Пифагора апофема боковой грани
h=DL=√(DN²+NL²)=√(27+(9/4))=3√10/2.
S (бок)=(1/2)·Р ( осн.) ·Н=(1/2)·(9√3·)(3√3)=81/2=40,5 кв см.
О т в е т.3√3 см; 40,5 кв. см
Апофемой правильной пирамиды называется высота боковой грани, проведенная из вершины пирамиды.
Основание правильной четырехугольной пирамиды - правильный четырёхугольник (квадрат), боковые грани - равнобедренные треугольники. Высота правильной четырехугольной пирамиды проецируется в точку пересечения диагоналей квадрата (основания), иначе – в центр вписанной в основание окружности.
Диаметр вписанной в квадрат окружности равен длине его стороны и перпендикулярен сторонам в точках касания. ⇒ ЕК=8, ЕК⊥РТ, ∆ ROK - прямоугольный. ОК=ОЕ=8:2=4. По т.Пифагора апофема RK=√(RO²+OK²)=√(7²+4²)=√65 (ед. длины)