Если принять за единицу измерения радиус круга и обозначить x длину стороны искомого квадрата, то задача сводится к решению уравнения: x^2=п, x=Vп
Как известно, с циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с конечного числа таких действий можно построить отрезок длины . Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа п, которая была доказана в 1882 году Линдеманом.
Однако эту неразрешимость следует понимать, как неразрешимость при использовании только циркуля и линейки
Обозначим высоту призмы через h
Стороны ΔABC в основании обозначим:
AB = a, BC = b, AC = c
Тогда для площадей боковых граней можем записать:
По условию:
Т.е. получено соотношение для сторон треугольника и все стороны можем выразить через x:
Зная объем призмы и ее высоту, можем найти площадь основания:
Запишем формулу Герона для площади треугольника ABC:
Подставим найденное нами значение для площади основания:
Подставим x в выражения для сторон треугольника:
ответ: Стороны основания равны 3,4 м, 3,4 м и 3,2 м
Если принять за единицу измерения радиус круга и обозначить x длину стороны искомого квадрата, то задача сводится к решению уравнения: x^2=п, x=Vп
Как известно, с циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с конечного числа таких действий можно построить отрезок длины . Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа п, которая была доказана в 1882 году Линдеманом.
Однако эту неразрешимость следует понимать, как неразрешимость при использовании только циркуля и линейки