Данные диагонали пересекаются в одной точке и составляют 4 прямоугольных угла. Можем найти их углы по определению синуса (отношение противолежащего катета к гипотенузе) и косинуса (отношение прилежащего катета к гипотенузе), а стороны (гипотенузы) по теореме Пифагора.
Известны катет a= 5 и катет b = 12
Найдем гипотенузу прямоугольного треугольника. Для этого воспользуемся формулой Пифагора:
В итоге, я узнала, что углы одного из четырех треугольников, на которые был разделен ромб, равны 90°;67,67°; 22,33°. Т.к. эти диагонали являлись также и биссектрисами, то мы умножим на 2 углы. Таким образом, у ромба 2 угла по 135,34° и 2 угла по 44,66°
Допустим, это треугольник АВС, высота - АН, биссектриса-АЕ, угол 10 градусов-это угол НАЕ.Так как НАЕ равен 10 градусам, а из условия следует, что АНЕ равен 90 градусов = мы можем для начала найти угол АЕН. Так как сумма углов треугольника должна быть равна 180 град., находим : 180 - (90+10)=80 - это угол АЕН.Так как сторона ВС-это как бы развернутый угол - значит он равен 180 градусов, поэтому мы можем найти угол АЕС : 180-80=100 - это угол АЕС.Так как биссектриса делит угол пополам - значит углы ВАН и ЕАС должны быть равны по 45 градусов(потому что их сумма=90 градусов), но не забываем о 10 градусах , поэтому выходит, что угол ВАН = 30, а ЕАС=45 градусов.Ну а теперь можем найти угол АВС. АВС=180-(90+35)=55 градТеперь еще один острый угол АСВ. АСВ=180-(55+90)=35 градусовответ: АЕС =100: ВАН=30: АСВ=35: ЕАС=45.
Данные диагонали пересекаются в одной точке и составляют 4 прямоугольных угла. Можем найти их углы по определению синуса (отношение противолежащего катета к гипотенузе) и косинуса (отношение прилежащего катета к гипотенузе), а стороны (гипотенузы) по теореме Пифагора.
Известны катет a= 5 и катет b = 12
Найдем гипотенузу прямоугольного треугольника. Для этого воспользуемся формулой Пифагора:
c ²=а²+b²
Тогда:
c = √ a²+b²
Подставляя значения a и b, получим:
c = √ ( 5 )² + ( 12 ) ²=13
Найдем, далее, острые углы прямоугольного треугольника
s i n A = a c = 5 *13 = 0.38
Отсюда:
∠ A = a r c s i n( 0.38 ) = 22.33 °
Найдем угол B:
∠ B = 90 ° − ∠ A = 67.67°
В итоге, я узнала, что углы одного из четырех треугольников, на которые был разделен ромб, равны 90°;67,67°; 22,33°. Т.к. эти диагонали являлись также и биссектрисами, то мы умножим на 2 углы. Таким образом, у ромба 2 угла по 135,34° и 2 угла по 44,66°