В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Valerykh123
Valerykh123
09.09.2020 12:51 •  Геометрия

Какая из точки А (0,3,6),В(-1,5,0),С(-2,0,-7),К(0,0,6) лежит в плоскости Оху

Показать ответ
Ответ:
усман14
усман14
09.01.2022 11:22
Найдем <B.Из теоремы о сумме углов тр-ка он равен 75 градусам.
По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC.
Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3  *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636.
Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2.
Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3.
ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
0,0(0 оценок)
Ответ:
sapphire11
sapphire11
06.01.2020 19:13

Чертёж смотрите во вложении.

Дано:

ABCD - квадрат и осевое сечение цилиндра.

СВ - сторона квадрата = а.

GH - высота цилиндра.

НВ - радиус основания цилиндра.

Объём цилиндра = объём шара.

Радиус шара = ?

Если осевое сечение цилиндра - квадрат, то радиус основания в два раза меньше этой стороны, а высота цилиндра равна стороне квадрата.

Следовательно -

HB=0,5*CB\\\\ \boxed{HB=0,5*a}

GH=CB\\\\ \boxed{GH=a}

Пусть V - объём цилиндра (и, также по условию задачи, шара), а r - радиус шара.

Объём цилиндра равен произведению площади основания цилиндра и её высоты.

То есть -

V = \pi *(0,5*a)^{2} *a\\\\V = \pi *0,25*a^{2} *a\\\\ \boxed{V = \pi *0,25*a^{3}}

Объём шара равен произведения куба радиуса, 4/3 и π.

То есть -

\boxed{V = \frac{4*\pi *r^{3} }{3} }

Написанные в рамках уравнения имеют одинаковые левые части. Поэтому, мы можем приравнять правые части уравнений и выразить переменную r -

\boxed{ \boxed{\pi *0,25*a^{3}}= \boxed{\frac{4*\pi *r^{3} }{3} }}\\\\\\\ \pi *0,75*a^{3} =4*\pi *r^{3}\\\\0,75*a^{3} =4*r^{3} \\\\r = \sqrt[3]{0,1875*a^{3} }\\\\r=a\sqrt[3]{0,1875}


Найти радиус шара, если известно, что его объем равен объему цилиндра с осевым сечением, имеющим фор
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота