В правильной четырехугольной пирамиде MABCD, все ребра которой равны 1,боковые рёбра - равносторонние треугольники. Их высота - это апофема А. Она равна 1*cos 30° = √3/2. Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД. В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды. d = a√2 = 1*√2 = √2. По теореме косинусов: cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3. Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен: <M = arc cos(1/3) = 1,230959 радиан = 70,52878°.
АВС - равнобедренный треугольник, в котором АВ=ВС=10см (в равнобедренном треугольнике боковые стороны равны между собой), АС=10√3 - это основание треугольника, ∠А=∠С. ВД - высота треугольника. Поскольку высота равнобедренного треугольника, опущенная на его основание, является биссектрисой и медианой, значит АД=СД=АС/2=10√3 / 2=5√3 см.
Треугольник АВД - прямоугольный, ∠Д=90°, поскольку ВД - это высота. Теорема Пифагора: квадрат гипотенузы=сумме квадратов катетов: АВ²=ВД²+АД² 10²=ВД²+(5√3)² 100=ВД²+75 ВД²=100-75 ВД²=25 ВД=5 см - это высота треугольника АВС.
cos∠А=АД/АВ cos∠А=5√3/10 cos∠А=√3/2 ∠А=30°
∠А=∠С= 30°
Сумма всех углов любого треугольника = 180° ∠А+∠В+∠С= 180° 30°+∠В+30°=180° ∠В=120°.
Площадь равнобедренного треугольника равняется произведению высоты на половину длины основания, то есть
S=ВД*АС/2=5*10√3/2=25√3 см²
ответ: высота ВД=5см, площадь S=25√3 см², углы треугольника равны 30°, 30°, 120°.
Их высота - это апофема А.
Она равна 1*cos 30° = √3/2.
Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД.
В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды.
d = a√2 = 1*√2 = √2.
По теореме косинусов:
cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3.
Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен:
<M = arc cos(1/3) = 1,230959 радиан = 70,52878°.
АВ=ВС=10см (в равнобедренном треугольнике боковые стороны равны между собой),
АС=10√3 - это основание треугольника,
∠А=∠С.
ВД - высота треугольника.
Поскольку высота равнобедренного треугольника, опущенная на его основание, является биссектрисой и медианой, значит АД=СД=АС/2=10√3 / 2=5√3 см.
Треугольник АВД - прямоугольный, ∠Д=90°, поскольку ВД - это высота.
Теорема Пифагора: квадрат гипотенузы=сумме квадратов катетов:
АВ²=ВД²+АД²
10²=ВД²+(5√3)²
100=ВД²+75
ВД²=100-75
ВД²=25
ВД=5 см - это высота треугольника АВС.
cos∠А=АД/АВ
cos∠А=5√3/10
cos∠А=√3/2
∠А=30°
∠А=∠С= 30°
Сумма всех углов любого треугольника = 180°
∠А+∠В+∠С= 180°
30°+∠В+30°=180°
∠В=120°.
Площадь равнобедренного треугольника равняется произведению высоты на половину длины основания, то есть
S=ВД*АС/2=5*10√3/2=25√3 см²
ответ: высота ВД=5см, площадь S=25√3 см², углы треугольника равны 30°, 30°, 120°.