В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
hlebushek225
hlebushek225
12.04.2022 21:04 •  Геометрия

Какие из следующих утверждений верны?

1) Если при пересечении двух прямых третьей прямой соответственные углы равны , то эти две прямые параллельны.

2) Любые две прямые имеют не менее одной общей точки.

3) Через любую точку проходит более одной прямой.

4) Любые три прямые имеют не менее одной общей точки.

Показать ответ
Ответ:
Miss4455
Miss4455
19.10.2022 20:33
Введем дополнительные обозначения:
Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD
a) по условию АВ-диаметр окружности, значит АО=ОВ=R
ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R 
Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R
Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит 
∠ВАD=∠OHA
При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD.
Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.

б) ∠ВАD=∠OHA=60°
∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R
∠ABC=∠BCD=180°-60°=120°
Если окружность касается CD, то ∠OKC=90° и ОК=R 
Сумма всех углов в четырехугольнике равна 360°
∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30°
Если ОQ -средняя линия трапеции, то OQ || AD, следовательно
∠BAD=∠BOQ=60°
∠KOQ=∠BOQ-∠ВОК=60°-30°=30°
ΔOQK -прямоугольный с прямым углом OKQ
cos30= \frac{OK}{OQ} \\ \frac{ \sqrt{3} }{2} = \frac{R}{OQ} \\ OQ= \frac{2R}{ \sqrt{3} }
OQ=HD- так как DQOH-параллелограмм
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} }
средняя линия трапеции =(а+в)/2
OQ=( BC+AD )/2 \\ \frac{2R}{ \sqrt{3} } =(2+R+ \frac{2R}{ \sqrt{3} }) /2= \frac{2 \sqrt{3}+R \sqrt{3}+2R}{ \sqrt{3}} /2 \\ \frac{2R}{ \sqrt{3} }=\frac{2 \sqrt{3}+R \sqrt{3}+2R}{ 2\sqrt{3}}|*2 \sqrt{3} \\ \\ 4R=2\sqrt{3} +R\sqrt{3} +2R \\ 2R-R\sqrt{3} =2\sqrt{3} \\ R(2-\sqrt{3} )=2\sqrt{3} \\ \\ R= \frac{2\sqrt{3} }{2-\sqrt{3} } = \frac{2\sqrt{3}(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}= \frac{4\sqrt{3}+2*3}{2 ^{2} -\sqrt{3}^{2} } = \frac{4\sqrt{3}+6}{4-3 }=4\sqrt{3}+6
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} } =R+\frac{2R \sqrt{3} }{\sqrt{3}*\sqrt{3}} = \frac{3R}{3} + \frac{2\sqrt{3}R}{3} = \frac{3R+2\sqrt{3}R}{3} = \\ \frac{3(4\sqrt{3}+6)+2 \sqrt{3} (4\sqrt{3}+6)}{3} = \frac{12 \sqrt{3}+18+24+12 \sqrt{3} }{3} = \frac{24 \sqrt{3}+42 }{3} =8 \sqrt{3} +14 \\ OTBET: 8 \sqrt{3} +14

Решите,мне нужно с рисунком. ☺дана равнобедренная трапеция abcd с основаниями ad и bc. окружность с
0,0(0 оценок)
Ответ:
Брат111111111
Брат111111111
07.09.2022 14:45

Основания - правильные треугольники. О₁ - центр верхнего основания (точка пересечения медиан (биссектрис, высот)), О - центр нижнего основания.

Пусть Н - середина В₁С₁, тогда О₁Н - радиус окружности, вписанной в треугольник А₁В₁С₁.

  О₁Н = а√3/6 = 6√3/6 = √3 см

Пусть К - середина ВС, тогда ОК - радиус окружности, вписанной в треугольник АВС:

   ОК = 12√3/6 = 2√3 см.

ОО₁ - высота пирамиды, тогда

ОО₁⊥ВС и АК⊥ВС, т.е. ребро ВС перпендикулярно двум пересекающимся прямым плоскости АКН, значит

ВС⊥(АКН)

Тогда ВС⊥КН, ∠НКА = 30° и НК - апофема пирамиды.

Sбок = (P₁ + P₂) · HK, где P₁ и P₂ - периметры оснований.

Осталось найти НК.

ОО₁НК - прямоугольная трапеция. Проведем в ней высоту НТ.

ОО₁НТ - прямоугольник, ОТ = О₁Н = √3 см

ТК = ОК - ОТ = 2√3 - √3 = √3 см

ΔНТК:    cos 30° = TK / HK

               HK = TK / cos 30° = √3 / (√3/2) = 2 см

Sбок = (P₁ + P₂) · HK = (6 ·3 + 12 · 3) · 2 = (18 + 36) · 2 = 54 · 2 = 108 см²

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота