АМ=МС-медиана делит сторону на которую опущена на две равные части
МД-общая сторона
В равнобедренном треугольнике медиана,если она опущена из вершины на основание,является одновременно и высотой,а высота-перпендикуляр и образует прямые углы
Угол АМД равен углу ДМС и каждый из них равен 90 градусов
Исходя из вышеизложенного мы можем утверждать,что треугольник АДМ равен треугольнику ДМС по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
ответ:Рассмотрим треугольники АМВ и СМД
АМ=МС-медиана делит сторону на которую опущена на две равные части
МД-общая сторона
В равнобедренном треугольнике медиана,если она опущена из вершины на основание,является одновременно и высотой,а высота-перпендикуляр и образует прямые углы
Угол АМД равен углу ДМС и каждый из них равен 90 градусов
Исходя из вышеизложенного мы можем утверждать,что треугольник АДМ равен треугольнику ДМС по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
Объяснение:
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.