Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
1) 108-это сумма образовавшихся вертикалных углов(т.к. смежные углы в сумме дают 180), а вертик.углы равны, значит 108:2=54, два других соответственно 180-54=126 2) один примем за Х, смежный 180-х, составляем уравнение (180-х)-х=68, 180-2х=68, 2х=112, х=56 это один угол, второй 180-56=24 3) составляем пропорцию 1/4=х/180-х, 4х=180-х, 5х=180, х=36 это один угол, второй 180-36=144 или 36умножить на4 равно 144 4) если биссектриса делит на два равных угла, то целый угол будет 25х2=50, второй 180-50=130 Не забывать, что вертикальные углы равны .
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.
130
Объяснение:
1) 108-это сумма образовавшихся вертикалных углов(т.к. смежные углы в сумме дают 180), а вертик.углы равны, значит 108:2=54, два других соответственно 180-54=126 2) один примем за Х, смежный 180-х, составляем уравнение (180-х)-х=68, 180-2х=68, 2х=112, х=56 это один угол, второй 180-56=24 3) составляем пропорцию 1/4=х/180-х, 4х=180-х, 5х=180, х=36 это один угол, второй 180-36=144 или 36умножить на4 равно 144 4) если биссектриса делит на два равных угла, то целый угол будет 25х2=50, второй 180-50=130 Не забывать, что вертикальные углы равны .