Какие предложения, описывающие понятие «экватор», верны? Экватор служит началом отсчёта географической долготы Экватор делит земной шар на Северное и Южное полушария Длина экватора приблизительно равна 40 076 км Экватор служит началом отсчёта географической широты Длина экватора приблизительно равна 6 380 км Экватор делит земной шар на Западное и Восточное полушария
Найдем сторону ромба АВ=√(АО²+ВО²)=√(225+400)=25, т.к. О- точка пересечения диагоналей. Делит их пополам. Площадь треуг. АОВ равна АВ*ОТ/2, где ОТ - высота треугольника, проведенная к АВ, с другой стороны, т.к. диагонали перпендикулярны, площадь этого же треуг. равна ВО*АО/2⇒ОТ=20*15/25=12, а из треуг. МОТ найдем МО=
√(МТ²-ОТ²)=√(400-144)=√256=16
Здесь расстояние от точки М до АВ - по теореме о трех перпендикулярах, раз проекция МТ на АВО это высота ОТ перпендикулярна АВ, то и МТ ей перпендикулярна.
2. Проведем из точки В высоты на стороны АD И DС соответственно ВО и ВК. Тогда по теореме о трех перпендикулярах МО⊥АD, МК⊥DС, МО=10,ОВ=√(МО²-МВ²)=√(10²-8²)=6, Площадь параллелограмма равна АD*ВО=20*6=120, с др. стороны, площадь равна DС*ВК⇒ВК=2*60/8=15
А расстояние от DС до точки М это МК=√(МВ²+ВК²)=√(64+225)=17
1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.