А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.
Докажем лемму Архимеда.
Точка касания B1 лежит на линии центров OO1.
B1O1B2 и B1OB3 - равнобедренные, ∠B1=∠B2=∠B3
O1B2||OB3 (соответственные углы равны)
O1B2⊥AC (радиус перпендикулярен касательной) => OB3⊥AC
Диаметр через B3 перпендикулярен хорде AC, следовательно делит дуги AC и AC' пополам.
B3 - середина дуги AC => диаметр через B3 перпендикулярен хорде AC, ∠M=90.
Аналогично ∠N=90
∪B3C3 =∠B3OC3 =∠MON =180-∠A (из четырехугольника AMON)
∪BC =2∠A
∠X =(∪BB3+∪CC3)/2 =(∪BC-∪B3C3)/2 =3/2 ∠A -90 =18° (угол между хордами)
Если прямые CB3 и BC3 пересекаются вне окружности - угол X между секущими.
∠X =(∪CC3-∪BB3)/2 =(∪BC-∪B3C3)/2 =3/2 ∠A -90 =18°
Не верное утверждение Г.
Объяснение:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.