1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
Так как перпендикуляры из В и С, опущенные на АD - параллельны,то ВF и ЕС при них секущие, и∠ 1=∠2, и∠ 3=∠ 4 как накрестлежащие. Рассмотрим треугольники ВМD и ВОЕ. Они подобны, так как оба прямоугольные по условию и имеют общий ∠ 1.Следовательно, и∠ 5 = ∠ 3 треугольника ВОЕ∠ 6 и ∠ 5 вписанные и опираются на одну и ту же дугу, которая стягивается хордой АВ. Следовательно,∠6 = ∠ 5. А ∠ 5 = ∠3 и потому и∠5=∠ 4, равенство с которым угла 3 доказано выше .Следовательно,∠ 6=∠ 4.Рассмотрим Δ АСН и Δ СОF Они прямоугольные, имеют общий угол АСН и потому подобны.Отсюда следует ∠ 2 = ∠7. Вписанный ∠7 опирается на ту же дугу, что вписанный ∠ 8 треугольника СВД, следовательно,∠7 = ∠8. Но ∠ 7= ∠2=∠ 1.⇒ ∠1=∠ 8. ⇒∠ 8=∠2 Рассмотрим Δ ВСF.Углы при основании ВF равны,СО делит ∠ ВСН на два равныхи является биссектрисой и высотой этого треугольника.Следовательно,Δ ВСF - равнобедренный. Но ЕО в треугольнике ВЕФ - также высота, и ВО=ОF.Этот треугольник также равнобедренный.∠ 1=∠ 9,а∠ 3= ∠10, т.к. ЕО высота и биссектриса равнобедренного треугольинка ВЕF Таким же образом треугольник ВСЕ и треугольник ЕFС равнобедренные и равны между собой. В результате всех этих доказательств мы имеем четырехугольник, в котором все стороны равны, и этого достаточно для того, чтобы утверждать равенство ЕF=ВС=1
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.
Они подобны, так как оба прямоугольные по условию и имеют общий ∠ 1.Следовательно, и∠ 5 = ∠ 3 треугольника ВОЕ∠ 6 и ∠ 5 вписанные и опираются на одну и ту же дугу, которая стягивается хордой АВ.
Следовательно,∠6 = ∠ 5.
А ∠ 5 = ∠3 и потому и∠5=∠ 4, равенство с которым угла 3 доказано выше .Следовательно,∠ 6=∠ 4.Рассмотрим Δ АСН и Δ СОF
Они прямоугольные, имеют общий угол АСН и потому подобны.Отсюда следует ∠ 2 = ∠7.
Вписанный ∠7 опирается на ту же дугу, что вписанный ∠ 8 треугольника СВД, следовательно,∠7 = ∠8.
Но ∠ 7= ∠2=∠ 1.⇒
∠1=∠ 8. ⇒∠ 8=∠2
Рассмотрим Δ ВСF.Углы при основании ВF равны,СО делит ∠ ВСН на два равныхи является биссектрисой и высотой этого треугольника.Следовательно,Δ ВСF - равнобедренный.
Но ЕО в треугольнике ВЕФ - также высота, и ВО=ОF.Этот треугольник также равнобедренный.∠ 1=∠ 9,а∠ 3= ∠10, т.к. ЕО высота и биссектриса равнобедренного треугольинка ВЕF
Таким же образом треугольник ВСЕ и треугольник ЕFС равнобедренные и равны между собой.
В результате всех этих доказательств мы имеем четырехугольник, в котором все стороны равны, и этого достаточно для того, чтобы утверждать равенство ЕF=ВС=1