Если соединить концы хорды с центром окружности, то получим равнобедренный прямоугольный треугольник с острыми углами по 45 градусов. Т.к. треугольник равнобедренный, то прямая от центра окружности до точки касания малой окружности и хорды равна половине хорды, то это будет 9 - радиус малой окружности, а радиус большой по теореме Пифагора: 9*9+9*9= корень из 162 - радиус большой окружности, а значит, мы всё знаем : Формула площади кольца: пи(Rбольшой^2-Rмалой^2)=пи*((корень из 162) в квадрате) - 9*9)= пи*(162-81)=пи*81
Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
пи(Rбольшой^2-Rмалой^2)=пи*((корень из 162) в квадрате) - 9*9)= пи*(162-81)=пи*81