d диаметр основания конуса l образующая конуса h высота конуса d = l = 2 => осевое сечения конуса - правильный треугольник со сторонами = d 1) Площадь осевого сечения конуса s: s = h*d h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3 s = h*d = 3*2 = 6 > 1,5 ответ: не может быть = 1,5 2) сечение, параллельное основанию, площадь которого равна 1 площадь сечения, параллельное основанию = от 0 до площади основания площадь основания s: s = πr² = πd²/4 = π*2²/4 = π 1∈]0;π[ ответ: может = 1 3) Наибольшая площадь треугольного сечения s: s = 6 > 2 ответ: наибольшая площадь треугольного сечения не равна 2 4) сечения конуса площадь осевого сечения = 6 площадь основания = π ответ: не существует сечение, площадь которого = 18 5) Расстояние от центра основания конуса до образующей = (d/2)*sin60 = (2/2)√3/2 = √3/2 ответ: расстояние от центра основания конуса до образующей = √3/2 6) расстояние от вершины конуса до основания это высота h = 3 ответ: не равно 2
В равнобокой трапеции диагональ перпендикулярна боковой стороне и является биссектрисой острого угла при основании. Найти высоту трапеции , если ее площадь равна 9√3
Объяснение:
АВСМ-равнобедренная трапеция.
1)Если трапеция является равнобедренной, то около неё можно описать окружность. Пусть О-принадлежит АМ . Тогда ОА=ОС=ОМ как центры описанной окружности , т. к. центр описанной окружности лежит на середине гипотенузы .
2)Углы 1 и 2 равны как накрест лежащие при АМ||ВС, АС-секущая⇒ΔАВС-равнобедренный и ВА=ВС. Значит и ВА=ВС=МС.
3)ΔОАВ=ΔОВС=ΔОСМ по трем сторонам ВА=ВС=МС, остальные радиусы......Значит
- ∠3=∠4=∠5=180°:3=60°.
- их площади равны и S(ΔОСМ )=9√3:3=3√3.
3)В ΔОСМ ,∠СОМ=60° и ОС=ОМ ⇒ два других угла по 60°⇒этот треугольник равносторонний.
S( равност.тр)=(а²√3):4 .Найдем сторону треугольника (а²√3):4=3√3 или а²=12 , а=√12 .
l образующая конуса
h высота конуса
d = l = 2 => осевое сечения конуса - правильный треугольник
со сторонами = d
1) Площадь осевого сечения конуса s:
s = h*d
h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3
s = h*d = 3*2 = 6 > 1,5
ответ: не может быть = 1,5
2) сечение, параллельное основанию, площадь которого равна 1
площадь сечения, параллельное основанию = от 0 до площади основания
площадь основания s:
s = πr² = πd²/4 = π*2²/4 = π
1∈]0;π[
ответ: может = 1
3) Наибольшая площадь треугольного сечения s:
s = 6 > 2
ответ: наибольшая площадь треугольного сечения не равна 2
4) сечения конуса
площадь осевого сечения = 6
площадь основания = π
ответ: не существует сечение, площадь которого = 18
5) Расстояние от центра основания конуса до образующей
= (d/2)*sin60 = (2/2)√3/2 = √3/2
ответ: расстояние от центра основания конуса до образующей = √3/2
6) расстояние от вершины конуса до основания
это высота h = 3
ответ: не равно 2
В равнобокой трапеции диагональ перпендикулярна боковой стороне и является биссектрисой острого угла при основании. Найти высоту трапеции , если ее площадь равна 9√3
Объяснение:
АВСМ-равнобедренная трапеция.
1)Если трапеция является равнобедренной, то около неё можно описать окружность. Пусть О-принадлежит АМ . Тогда ОА=ОС=ОМ как центры описанной окружности , т. к. центр описанной окружности лежит на середине гипотенузы .
2)Углы 1 и 2 равны как накрест лежащие при АМ||ВС, АС-секущая⇒ΔАВС-равнобедренный и ВА=ВС. Значит и ВА=ВС=МС.
3)ΔОАВ=ΔОВС=ΔОСМ по трем сторонам ВА=ВС=МС, остальные радиусы......Значит
- ∠3=∠4=∠5=180°:3=60°.
- их площади равны и S(ΔОСМ )=9√3:3=3√3.
3)В ΔОСМ ,∠СОМ=60° и ОС=ОМ ⇒ два других угла по 60°⇒этот треугольник равносторонний.
S( равност.тр)=(а²√3):4 .Найдем сторону треугольника (а²√3):4=3√3 или а²=12 , а=√12 .
Площадь можно найти иначе S( равност.тр)=1/2*а*h.
3√3=1/2*√12*h или h=3.