Какое из следующих утверждений неверно?
а) длиной ненулевого вектора называется длина отрезка АВ;
б) нулевой вектор считается сонаправленным любому вектору;
в) ;
г) разностью векторов а и b называется такой вектор. сумма которого с вектором b равна вектору а;
д) векторы называются равными, если равны их длины.
2. У выражение:
, если ABCDA₁B₁C₁D₁ - параллелепипед.
а) ; б) ; в); г) ; д) .
3. Какое из следующих утверждений верно?
а) сумма нескольких векторов зависит от того, в каком порядке они складываются;
б) противоположные векторы равны;
в) для нахождения разности векторов необходимо, чтобы они выходили из одной точки;
г) произведение вектора на число является число;
д) для любых векторов а и b не выполняется равенство а+b=b+a.
4. Ребро куба ABCDA₁B₁C₁D₁ равно 1. Найдите ||.
а) 1; б) 2; в) ; г); д) 0,5 .
5. Какое из следующих утверждений неверно?
а) векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости;
б) если вектор с можно разложить по векторам а и b, т.е. представить в виде с=ха+yb, где х, y- некоторые числа, то векторы а, b, c компланарны;
в) для сложения трёх некомпланарных векторов используют правило параллелепипеда;
г) любые два вектора компланарны;
д) любые три вектора некомпланарны.
6. Известно, что . Тогда прямые АС и ВD:
а) параллельны; б) пересекаются; в) скрещиваются; г) совпадают;
д) выполняются все условия пунктов а-г.
7. Векторы p, a, b некомпланарны, если:
а) при откладывании из одной точки они не лежат в одной плоскости;
б) два из данных векторов коллинеарны; в) один из данных векторов нулевой;
г) p=a – b; д) р=а.
8. ABCDA₁B₁C₁D₁-параллелепипед. Какой из предложенных векторов будет компланарен с векторами и ?
а) ; б) ; в) ; г) ; д) .
9.Известно, что 2=, тогда векторы , являются:
а) некомпланарными; б) сонаправленными; в) коллинеарными;
г) нулевыми; д) компланарными.
2 из 2
10. Даны параллелограммы ABCD и AB₁C₁D₁. Тогда векторы , , :
а) нулевые; б) равные; в) противоположные; г) компланарные; д) некомпланарные
1) Равные треугольники по первому признаку: 2, 8, 13.
2) Равные треугольники по второму признаку: 3, 12, 14.
3) Равные треугольники по третьему признаку: 1, 11.
4) Треугольники не равны или невозможно определить: 4, 5, 6, 7, 9, 10.
Объяснение:
Первый признак равенства треугольников
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.
Второй признак равенства треугольников
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам второго треугольника, то треугольники равны.
Третий признак равенства треугольников
Если три стороны одного треугольника соответственно равны трем сторонам другого, то треугольники равны.
1)Пусть ABC — данный треугольник (угол C — прямой, AC = 15); CD — высота; BD = 16. Обозначим BD = x. Из подобия треугольников ABC и ACD (угол A общий, ⁄ ADC = ⁄ ACB = 90°) получаем
2)
Пусть а и в катеты треугольника, тогда с=30, т.к. радиус описанной окружности равен половине гипотенузы r=p-c,p=r+c=36, P=36*2=72,a+b=72-30=42.имеем
{а+в=42
a^2+b^2=900
{a^2+b^2=2*ab=42^2=1764
a^2+b^2=900
{900+2*ab=1764
2ab=1764-900
{a+b=42
ab=432
a^2-42a+432=0
а1=18,а2=24
в1=24, в2=18