В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
anastasiakhrul
anastasiakhrul
29.10.2020 12:58 •  Геометрия

Какова наибольшая возможная площадь четырехугольника abcd, стороны которого равны ab=1, bc=8, cd=7,da=4?

Показать ответ
Ответ:
olyakak00Fokcu
olyakak00Fokcu
15.07.2020 14:23
SABCD=SABC+SACD=1/2*8*1*sinB+1/2*7*4*sinD=2*(2*sinB+7*sinD)
  Чем больше косинусы ,тем выше значение выражения.
Заметим  что:
AB^2+BC^2=8^2+1^2=AD^2+CD^2=7^2+4^2=65
То  если угол B прямой,то раз  cторона AC общая,то и угол D будет  прямым  из  обратной  теоремы Пифагора.
То sinB=sinD=1.
Очевидно  что при данных синусах  площадь будет наибольшей  поскольку: sinB<=1 ,sinD<=1
Откуда Smax=2*(2+7)=18
ответ:Smax=18.

Какова наибольшая возможная площадь четырехугольника abcd, стороны которого равны ab=1, bc=8, cd=7,d
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота